Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 179))

Abstract

Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes.

Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Oarlo (MOMO) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MOMO is likely the method of choice for the most complex problems that involve high dimensional integrals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Agresti and J. Hartzel. Strategies for comparing treatments on a binary response with multi-centre data. Statistics in Medicine, 19:1115–1139, 2000.

    Article  Google Scholar 

  2. P. J. Beitler and J. R. Landis. A mixed-effects model for categorical data. Biometrics, 41:991–1000, 1985.

    Article  Google Scholar 

  3. J. G. Booth and J. P. Hobert. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B, 61:265–285, 1999.

    Article  MATH  Google Scholar 

  4. N. Breslow, B. Leroux, and R. Platt. Approximate hierarchical modelling of discrete data in epidemiology. Statistical Methods in Medical Research, 7:49–62, 1998.

    Article  Google Scholar 

  5. N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88:9–25, 1993.

    Article  MATH  Google Scholar 

  6. N. E. Breslow and X. H. Lin. Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika, 82:81–91, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Chen and L. Kuo. A note on the estimation of the multinomial logit model with random effects. American Statistician, 55:89–95, 2001.

    Article  MathSciNet  Google Scholar 

  8. D. G. Clayton. Generalized linear mixed models. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, chapter 16, pages 275–301. Chapman and Hall, London, 1999.

    Google Scholar 

  9. CYTEL Software Corporation. EGRET for Windows. CYTEL Software Corporation, Cambridge, MA, 1999.

    Google Scholar 

  10. D. R. Cox and E. J. Snell. Analysis of Binary Data, Second Edition. Chapman and Hall, London, 1989.

    MATH  Google Scholar 

  11. P. J. Davis and I. Polonsky. Numerical interpolation, differentiation and integration. In M. Abramowitz and I. A. Stegun, editors, Handbook of Mathematical Functions, chapter 25, pages 875–924. U.S. Government Printing Office, Washington, D.C., 1964.

    Google Scholar 

  12. B. Engel and A. Keen. A simple approach for the analysis of generalized linear mixed models. Statistica Neerlandica, 48:1–22, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. J. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7:473–511, 1992.

    Article  Google Scholar 

  14. H. Goldstein. Nonlinear multilevel models, with an application to discrete response data. Biometrika, 78:45–51, 1991.

    Article  MathSciNet  Google Scholar 

  15. H. Goldstein. Multilevel Statistical Models. Edward Arnold, London, 1995.

    Google Scholar 

  16. H. Goldstein and J. Rasbash. Improved approximations for multilevel models with binary responses. Journal of the Royal Statistical Society, Series A, 159:505–513, 1996.

    MathSciNet  MATH  Google Scholar 

  17. S. Greenland. Hierarchical regression for epidemiologic analyses of multiple exposures. Environmental Health Perspectives, 102:33–39, 1994.

    Article  Google Scholar 

  18. D. Hedeker and R. D. Gibbons. MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49:157–176, 1996.

    Article  Google Scholar 

  19. C. R. Henderson. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31:423–447, 1975.

    Article  MATH  Google Scholar 

  20. A. Y. C. Kuk and Y. W. Cheng. The Monte Carlo Newton-Raphson algorithm. Journal of Statistical Computation and Simulation, 59:233–250, 1997.

    Article  MATH  Google Scholar 

  21. A. Y. C. Kuk and Y. W. Cheng. Pointwise and functional approximations in Monte Carlo maximum likelihood estimation. Statistics and Computing, 9:91–99, 1999.

    Article  Google Scholar 

  22. Y. Lee and J. A. Nelder. Hierarchical generalized linear models (with discussion). Journal of the Royal Statistical Society, Series B, 58:619678, 1996.

    MathSciNet  Google Scholar 

  23. Y. Lee and J. A. Nelder. Hierarchical generalised linear models: A synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika, 88:987–1006, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Lin and N. E. Breslow. Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association, 91:1007–1016, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Lin and D. Zhang. Inference in generalized additive mixed models by using smoothing splines. Journal of the Royal Statistical Society, Series B, 61:381–400, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. SAS System for Mixed Models. SAS Institute Inc., Cary, N.C., 1996.

    Google Scholar 

  27. Q. Liu and D. A. Pierce. A note on gauss-hermite quadrature. Biometrika, 81:624–629, 1994.

    MathSciNet  MATH  Google Scholar 

  28. P. McCullagh and J. A. Nelder. Linear Models, Second Edition. Chapman and Hall, London, 1989.

    MATH  Google Scholar 

  29. C. E. McCulloch. Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association, 92:162–170, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. E. McCulloch and S. R. Searle. Generalized, Linear, and Mixed Models. Wiley, New York, 2001.

    MATH  Google Scholar 

  31. C. A. McGilchrist. Estimation in generalized mixed models. Journal of the Royal Statistical Society, Series B, 56:61–69, 1994.

    MathSciNet  MATH  Google Scholar 

  32. K. J. McKonway, M. C. Jones, and P. C. Taylor. Statistical Modelling using GENSTAT. Arnold, London, 1999.

    Google Scholar 

  33. R. B. Millar and T. J. Willis. Estimating the relative density of snapper in and around a marine reserve using a log-linear mixed-effects model. Australian and New Zealand Journal of Statistics, 41:383–394, 1999.

    Article  MATH  Google Scholar 

  34. J. Myles and D. Clayton. GLMMGibbs: An R Package for Estimating Bayesian Generalised Linear Mixed Models by Gibbs Sampling. Imperial Cancer Research Fund, London, 2001.

    Google Scholar 

  35. J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society, Series A, 135:370–384, 1972.

    Article  Google Scholar 

  36. J. Pinheiro and D. M. Bates. Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4:12–35, 1995.

    Google Scholar 

  37. J. Rasbash, W. Browne, H. Goldstein, M. Yang, I. Plewis, M. Healy, G. Woodhouse, D. Draper, I. Langford, and T. Lewis. A User’s Guide to MLwiN. Institute of Education, London, 2000.

    Google Scholar 

  38. S. W. Raudenbush, A. S. Byrke, Y. F. Cheong, and R Congdon. HLM 5: Hierarchical Linear and Nonlinear Modeling. Scientific Software International, Lincolnwood, IL, 2000.

    Google Scholar 

  39. S. W. Raudenbush, M. L. Yang, and M. Yosef. Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9:141–157, 2000.

    MathSciNet  Google Scholar 

  40. R. Schall. Estimation in generalized linear models with random effects. Biometrika, 78:719–727, 1991.

    Article  MATH  Google Scholar 

  41. Z. M. Shun. Another look at the salamander mating data: A modified Laplace approximation approach. Journal of the American Statistical Association, 92:341–349, 1997.

    Article  MATH  Google Scholar 

  42. Z. M. Shun and P. McCullagh. Laplace approximation of high-dimensional integrals. Journal of the Royal Statistical Society, Series B, 57:749–760, 1995.

    MathSciNet  MATH  Google Scholar 

  43. P. J. Solomon and D. R. Cox. Nonlinear component of variance models. Biometrika, 79:1–11, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  44. D. J. Spiegelhalter, A. Thomas, N. G. Best, and W. R. Gilks. BUGS: Bayesian Inference using Gibbs Sampling, Version 0.30. Medical Research Council Biostatistics Unit, Cambridge, 1994.

    Google Scholar 

  45. SAS Institute Inc. Staff. The NLMIXED procedure. In SAS/STAT User’s Guide Version 8, chapter 46, pages 2421–2504. SAS Publishing, Cary, NC, 2000.

    Google Scholar 

  46. R. Stiratelli, N. Laird, and J. H. Ware. Random-effects models for serial observations with binary response. Biometrics, 40:961–971, 1984.

    Article  Google Scholar 

  47. P. F. Thall and S. C. Vail. Some covariance models for longitudinal count data with overdispersion. Biometrics, 46:657–671, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Wolfinger. Laplace’s approximation for nonlinear mixed models. Biometrika, 80:791–795, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Wolfinger and M. O’Connell. Generalized linear mixed models: A pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 48:233–243, 1993.

    Article  MATH  Google Scholar 

  50. S. L. Zeger and M. R. Karim. Generalized linear models with random effects; a Gibbs sampling approach. Journal of the American Statistical Association, 86:79–86, 1991.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breslow, N. (2004). Whither PQL?. In: Lin, D.Y., Heagerty, P.J. (eds) Proceedings of the Second Seattle Symposium in Biostatistics. Lecture Notes in Statistics, vol 179. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9076-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9076-1_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20862-6

  • Online ISBN: 978-1-4419-9076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics