Advertisement

Electrical Behavior of Organic Transistors and Circuits

  • David J. Gundlach
  • Michael S. Shur
  • Thomas Jackson
  • Jerzy Kanicki
  • Sandrine Martin
  • Ananth Dodabalapur
  • Brain Crone

Abstract

The first studies of organic semiconductors date back nearly 100 years with the observation of photoconductivity in anthracene by Pochettino1 and the study of its dark conductivity by Koenigsberger and Schilling.2 While the physical properties of organic semiconductors have been the subject of intense study since these early findings, it has only been within the last 20 years that organic semiconductors for use as the active layer in organic thin film transistors (OTFTs) have been a topic of study. Despite the recent finding of scientific misconduct of a researcher at Bell Labs investigating single-crystal organic materials and OTFTs3 which has invalidated published results, showing unprecedented behavior in crystalline organic semiconductors (such as, high-temperature superconductivity, quantum Hall effect, ballistic transport, injection lasing, and exceedingly large carrier mobility at low temperatures), their remains tremendous interest in OTFTs, and organic electronics in general.

Keywords

Gate Voltage Field Effect Transistor Organic Semiconductor Gate Insulator Apply Physic Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

41.10 Section 4.1 References

  1. [1]
    A. Pochettino, Atti Acad. Lincei Rendic., vol XV, p. 355 (1906)Google Scholar
  2. [2]
    J. Koenigsberger and K. Schilling, Annalen der Physik, vol. 32, p. 179 (1910)MATHGoogle Scholar
  3. [3]
    M. Beasley, H. Kroemer, H. Kogelnik, D. Monroe, and S. Datta, Report of the Investigation Committee on the Possibility of Scientific Misconduct in the Work of Hendrik Schön and Co-Authors, September (2002)Google Scholar
  4. [4]
    F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, vol. 54, p. 3255 (1983)Google Scholar
  5. [5]
    M. Madru, G. Guillaud, M. Al Sadoun, M. Maitrot, C. Clarisse, M. Le Contellec, and J.-J. Simon, “The first field effect transistor based on an intrinsic molecular semiconductor,” Chemistry Physics Letters, vol. 142, pp. 103–105(1987)Google Scholar
  6. [6]
    G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Gamier, “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Communications, vol. 72, pp. 381–384 (1989)Google Scholar
  7. [7]
    A. Tsumura, H. Koezuka, and T. Ando, “Polythiophene field-effect transistors: its characteristics and operation,” Synthetic Metals, vol. 25, pp. 11–23(1988)Google Scholar
  8. [8]
    A. Assadi, M. Willander, C. Svensson, and J. Hellberg, “Fabrication and characterization of Schottky gate poly (3-alkylthiophene) planar field-effect transistors,” Synthetic Metals, vol. 58, pp. 187–193 (1993)Google Scholar
  9. [9]
    Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Applied Physics Letters, vol. 69, pp. 4108–4110, 1996.Google Scholar
  10. [10]
    A. R. Brown, A. Pomp, D. M. de Leeuw, D. B. M. Klaassen, E. E. Havinga, P. Herwig, and K. Müllen, “Precursor route pentacene metalinsulator-semiconductor field-effect transistors,” Journal of Applied Physics, vol. 79, pp. 2136–2138 (1996)Google Scholar
  11. [11]
    D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, “Pentacene organic thin film transistors-molecular ordering and mobility,” IEEE Electron Device Letters, vol. 18, pp. 87–89 (1997)Google Scholar
  12. [12]
    Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin film transistors with improved characteristics,” IEEE Electron Device Letters, vol. 18, pp. 606–608 (1997)Google Scholar
  13. [13]
    D. J. Gundlach, Y. Y. Lin, T. N. Jackson, D. G. Schlom, “Oligophenyl-Based Organic Thin Film Transistors,” Applied Physics Letters, vol. 71, pp. 3853–3855 (1997)Google Scholar
  14. [14]
    H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature, vol. 404, pp. 478–480 (2000)Google Scholar
  15. [15]
    J. Xue and S. R. Forrest, “Organic thin-film transistors based on bis(1,2,5-thiadiazolo)-p-quinobis(l,3-dithiole),” Applied Physics Letters, vol. 79, pp. 3714–3716 (2001)Google Scholar
  16. [16]
    D. J. Gundlach, L. Zhou, J. A. Nichols, and T. N. Jackson, “Thin Film Transistors Based on Well-Ordered Thermally Evaporated Naphthacene Films,” Applied Physics Letters, vol. 80, pp. 2925–2927 (2002)Google Scholar
  17. [17]
    C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, “Low-cost all-polymer integrated circuits,” Applied Physics Letters, vol 73, pp. 108–110 (1998)Google Scholar
  18. [18]
    H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, R Brederlow, S. Briole, C. Pacha, R. Thewes, and W. Weber, “Organic thin film transistors and fast circuits on flexible substrates,” 2002 International Electron Devices Meeting Technical Digest, pp. 557-560 (2002)Google Scholar
  19. [19]
    M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk, T. N. Jackson, “Analog and Digital Circuits Using Organic Thin-film Transistors on Polyester Substrates,” IEEE Electron Device Letters, vol. 21, pp. 534–536(2000)Google Scholar
  20. [20]
    G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, “High-performance all-polymer integrated circuits,” Applied Physics Letters, vol. 77, pp. 1487–1489 (2000)Google Scholar
  21. [21]
    W. Fix, A. Ullmann, J. Ficker, and W. Clemens, “Fast polymer integrated circuits,” Applied Physics Letters, vol. 81, pp. 1735–1737 (2002)Google Scholar
  22. [22]
    P. Mach, S. J. Rodriguez, R, Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithic integrated, flexible display of polymer-dispersed crystal driven by rubber-stamped organic thin film transistors,” Applied Physics Letters, vol. 78, pp. 3592–3594(2001)Google Scholar
  23. [23]
    C. D. Sheraw, L. S. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, J. Campi, and B. K. Greening, J. Francl, and J. West, “Organic Thin-Film Transistor-Driven Polymer-Dispersed Liquid Crystal Displays on Flexible Polymeric Substrates,” Applied Physics Letters, vol. 80, pp. 1088–1090(2002)Google Scholar
  24. [24]
    H. Edzer, A. Huitema, G. H. Gelinck, J. Bas, P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. de Leeuw, ” Active-matrix displays driven by solution processed polymeric transistors,” Advanced Materials, vol. 14, pp. 1201–1204(2002)Google Scholar
  25. [25]
    P. K. Weimer, “An evaporated thin-film triode,” IRE Transactions on Electron Devices, vol. 8, p. 421 (1961)Google Scholar
  26. [26]
    P. K. Weimer, “The TFT — A new thin-film transistor,” Proceedings of the IRE, pp. 1462–1469(1962)Google Scholar
  27. [27]
    P. G. Le Comber, W. E. Spear, and A. Ghaith, “Amorphous silicon field-effect device and possible application,” Electronics Letters, vol. 15, pp. 179–181(1979)Google Scholar
  28. [28]
    R. A Street, Hydrogenated Amorphous Silicon, Cambridge University Press, Cambridge, 1991.Google Scholar
  29. [29]
    M. S. Shur, T. Wilson, and D. Urban (eds.), “Electronics on unconventional substrates — Electrotextiles and giant-area flexible circuits,” Proceedings of the Materials Research Society, vol. 736 (2003)Google Scholar
  30. [30]
    Y. Kuo (ed.), Poly-Si Thin Film Transistors, Kluwer Publishing Company (2003)Google Scholar
  31. [31]
    K. M. Vaeth, “OLED-display technology,” Information Display, vol. 19, pp. 12–17(2003)Google Scholar
  32. [32]
    C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics,” Advanced Materials, 14, pp. 99–117 (2002)Google Scholar
  33. [33]
    G. Horowitz, “Organic field-effect transistors,” Advanced Materials, vol. 10, pp. 365–377(1998)Google Scholar
  34. [34]
    D. J. Gundlach, C. C. Kuo, S. F. Nelson, T. N. Jackson, “Organic Thin Film Transistors with Field Effect Mobility > 2 cm2/V-s,” 57 th Device Research Conference Digest, pp. 164–165 (1999)Google Scholar
  35. [35]
    H. Klauk, M. Halik, U. Zshienschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” Journal of Applied Physics, vol. 92, pp. 5259–5263 (2002)Google Scholar
  36. [36]
    F. Gamier, R. Hajlaoui, and M. El Kassmi, “Vertical device architecture by molding of organic-based thin film transistors,” Applied Physics Letters, vol. 73, pp. 1721–1723(1998)Google Scholar
  37. [37]
    N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors,” Science, vol. 299, pp. 1881–1884 (2003)Google Scholar
  38. [38]
    K. Kudo, K. Shimada, K. Marugami, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Organic static induction transistor for color sensors,” Synthetic Metals, vol. 102, pp. 900–903 (1999)Google Scholar
  39. [39]
    K. Kudo, M. Iizuka, S. Kuniyoshi, and K. Tanaka, “Device characteristics of lateral and vertical type organic field effect transistors,” Thin Solid Films, vol. 393, pp. 362–367 (2001)Google Scholar
  40. [40]
    H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasedaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123–2126 (2000)Google Scholar
  41. [41]
    Z. Bao, A. J. Lovinger, and A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Applied Physics Letters, vol. 69, pp. 3066–3068 (1996)Google Scholar
  42. [42]
    C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, vol. 80, pp. 2501–2508 (1996)Google Scholar
  43. [43]
    Y.-Y. Lin, “Fabrication and Characterization of Pentacene-Based Thin Film Transistors,” Ph. D. Thesis, The Pennsylvania State University, University Park, PA (1998)Google Scholar
  44. [44]
    H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,” Applied Physics Letters, vol. 77, pp. 406–408 (2000)Google Scholar
  45. [45]
    D. J. Gundlach, “Small-Molecule Organic Thin Film Transistors,” Ph. D. Thesis, The Pennsylvania State University, University Park, PA (2001)Google Scholar
  46. [46]
    G. Horowitz and M. E. Hajlaoui, “Grain size dependent mobility in polycrystalline organic field-effect transistors,” Synthetic Metals, vol. 122, pp. 185–189(2001)Google Scholar
  47. [47]
    D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectric: Morphology, structural properties, and electronic transport,” Journal of Applied Physics, vol. 93, pp. 347–355, (2003)Google Scholar
  48. [48]
    N. Karl, “Charge carrier transport in organic semiconductors,” Synthetic Metals, vol. 133-134, pp. 649–657 (2003)Google Scholar
  49. [49]
    P. Herwig and K. Müllen, “A soluble pentacene precursor: Synthesis, solid-state conversion into pentacene and application in a field-effect transistor,” Advanced Materials, vol. 11, pp. 480–483 (1999)Google Scholar
  50. [50]
    H. Akimichi, K. Waragai, S. Hotta, H. Kano, and H. Sakaki, ” Field-effect transistors using alkyl substituted oligothiophenes,” Applied Physics Letters, vol. 58, pp. 1500–1502 (1991)Google Scholar
  51. [51]
    CD. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hedge, and S. Purushothaman, “Field-effect transistors comprising molecular beam deposited α, ω-dihexyl-hexathienylene and polymeric insulator,” Synthethic Metals, vol. 92, pp. 47–52 (1998)Google Scholar
  52. [52]
    M. Halik, H. Klauk, U. Zshienschang, G. Schmid, W. Radlik, S. Ponomarenko, S. Kirchmeyer, and W. Weber, “High-mobility organic thin film transistors based on α, α-dideclyoligothiophenes,” Journal of Applied Physics, vol. 93, pp. 2977–2981 (2003)Google Scholar
  53. [53]
    W. Warta, R. Stehle, and N. Karl, “Ultra pure, high mobility organic photoconductors,” Applied Physics A, vol. 36, pp. 163–165 (1985)Google Scholar
  54. [54]
    N. Karl, In: Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, ed. by R. Farchioni and G. Grosso, Berlin: Springer-Verlag (2001)Google Scholar
  55. [55]
    N. Karl, K.-H. Kraft, J. Varktanner, M. Münch, F. Schatz, R. Stehle, and H.-M. Uhde, “Fast electronic transport in organic molecular solids,” Journal of Vacuum Science and Technology A, vol. 17, pp. 2318–2328 (1999)Google Scholar
  56. [56]
    A. Salleo, M. L. Chabinyc, M. S. Yang, and R. A. Street, “Polymer thin-film transistors with chemically modified dielectric interfaces,” Applied Physics Letters, vol. 81, pp. 4383–4385 (2002)Google Scholar
  57. [57]
    N. Koch, A. Kahn, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, “Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism,” Applied Physics Letters, vol. 82, pp. 70–72 (2003)Google Scholar
  58. [58]
    G. B. Blanchet, Y.-L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, “Large-area, high-resolution, dry printing of conducting polymers for organic electronics,” Applied Physics Letters, vol. 82, pp. 463–465 (2003)Google Scholar
  59. [59]
    Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Applied Physics Letters, vol. 81, pp. 562–564 (2002)Google Scholar
  60. [60]
    M. Halik, H. Klauk, U. Zshienschang, T. Kriem, G. Schmid, and W. Radlik, “Fully patterned all-organic thin film transistors,” Applied Physics Letters, vol. 81, pp. 289–291 (2002)Google Scholar
  61. [61]
    Y. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “Pentacene-Based Organic Thin-film Transistors,” IEEE Transactions on Electron Devices, vol. 44, pp. 1325–1331(1997)Google Scholar
  62. [62]
    D. J. Gundlach, C.-C. Kuo, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Improved organic thin film transistor performance using chemically modified gate dielectrics,” Proceedings of SP1E, vol. 4466, pp. 54–64 (2001)Google Scholar
  63. [63]
    M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene,” Applied Physics Letters, vol. 81, pp. 268–270 (2002)Google Scholar
  64. [64]
    A. C. Tickle, Thin-Film Transistors: A New Approach to Microelectronics, New York: Wiley (1969)Google Scholar
  65. [65]
    M. S. Shur, Physics of Semiconductor Devices, New Jersey: Prentice-Hall (1990)Google Scholar
  66. [66]
    D. W. Greve, Field Effect Devices and Applications, New Jersey: Prentice Hall (1998)Google Scholar
  67. [67]
    A. Silinsh and V. Ćápek, Organic Molecular Crystals, Interaction: Localization, and Transport Phenomena, New York: AIP Press (1994)Google Scholar
  68. [68]
    V. Ćápek and I. Muzikante, In: Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids, ed. by R. Farchioni and G. Grosso, Berlin: Springer-Verlag (2001)Google Scholar
  69. [69]
    P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Modeling of organic thin film transistors of different designs,” Journal of Applied Physics, vol. 88, pp. 6594–6597 (2000)Google Scholar
  70. [70]
    L. Torsi, A. Dodabalpur, and H. E. Katz, “An analytical model for short-channel organic thin-film transistors,” Journal of Applied Physics, vol. 78, pp. 1088–1093(1995)Google Scholar
  71. [71]
    H. L. Kwok, “Analytical model for current transport in organic thin-film transistors,” IEE Proceedings on Circuits Devices Systems, vol. 147, pp. 125–128 (2000)Google Scholar
  72. [72]
    G. Horowitz, R. Hajlaoui, and F. Kouki, “An analytical model for the organic field-effect transistor in the depletion mode. Application to sexithiophene films and single crystals,” European Physics Journal AP., vol. 1, pp. 361–367 (1998)Google Scholar
  73. [73]
    S. M. Sze, Physics of Semiconductor Devices, New York: Wiley (1981)Google Scholar
  74. [74]
    G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, “The concept of ‘threshold voltage’ in organic field-effect transistors,” Advanced Materials, vol. 10, pp. 923–926 (1998)Google Scholar
  75. [75]
    E. J. Meijer, C. Tanase, P. W. M. Blom, E. van Veenendaal, B.-H. Huesman, D. M. de Leeuw, and T. M. Klapwijk, “Switch-on voltage in disordered organic field-effect transistors,” Applied Physics Letters, vol. 89, pp. 3838–3840 (2002)Google Scholar
  76. [76]
    H. Sirringhaus, R. H. Friend, S. C. Li, S. C. Moratti, A. B. Holmes, and N. Feeder, “Bis(dithienothiophene) organic field-effect transistors with a high on/off ratio,” Applied Physics Letters, vol. 71, pp. 3871–3873 (1997)Google Scholar
  77. [77]
    D. J. Gundlach, H. Klauk, C. D. Sheraw, C-C. Kuo, J-R. Huang, and T. N. Jackson, “High-Mobility, Low-Voltage Organic Thin Film Transistors,” 1999 International Electron Devices Meeting Technical Digest, pp. 111–114 (1999)Google Scholar
  78. [78]
    S. Scheinert, G. Paasch, M. Schröd ner, H.-K. Roth, S. Sensfuß, and Th. Doll, “Subthreshold characteristics of field effect transistors based on poly(3-dodecylthiophene) and an organic insulator,” Journal of Applied Physics, vol. 92, pp. 330–337 (2002)Google Scholar
  79. [79]
    A. R. Völ kel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Physical Review B, vol. 66, p. 195336 (2002)Google Scholar
  80. [80]
    S. Scheinert, G. Paasch, and T. Lindner, “Relevance of organic field effect transistor models: Simulation vs. experiment,” Synthetic Metals, vol. 137, pp. 1451–1452 (2003)Google Scholar
  81. [81]
    M. A. Alam, A. Dodabalapur, and M. R. Pinto, “A two-dimensional simulation of organic transistors,” IEEE Transactions on Electron Devices, vol. 44, pp. 1332–1337(1997)Google Scholar
  82. [82]
    R. Tecklenburg, G. Paasch, and S. Scheinert, “Theory of organic field effect transistor,” Advanced Materials Optical Electronics, vol. 8, pp. 285–294 (1998)Google Scholar
  83. [83]
    A. Bolognesi, A. Di Carlo, and P. Lugli, “Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors,” Applied Physics Letters, vol. 81, pp. 4646–4648 (2002)Google Scholar
  84. [84]
    T. Li, P. P. Ruden, I. H. Campbell, and D. L. Smith, “Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling,” Journal of Applied Physics, vol. 93, pp. 4017–4022 (2003)Google Scholar
  85. [85]
    N. Tessler and Y. Roichman, “Two-dimensional simulation of polymer field-effect transistor,” Applied Physics Letters, 79, pp. 2987–2989 (2001)Google Scholar
  86. [86]
    Y. Roichman and N. Tessler, Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, vol. 80, pp. 151–153(2002)Google Scholar
  87. [87]
    T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, and D. L. Smith, “Channel formation in organic field-effect transistors,” Journal of Applied Physics, vol. 91, pp. 4312–4318 (2002)Google Scholar
  88. [88]
    G. Horowitz, M. E. Hajlaoui, and R. Hajilaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors,” Journal of Applied Physics, vol. 87, pp. 4456–4463 (2000)Google Scholar
  89. [89]
    G. Guillaud and J. Simon, “Transient behavior of nickel phthalocyanine thin film transistors,” Chemistry Physics Letters, vol. 219, pp. 123–126 (1994)Google Scholar
  90. [90]
    G. Guillaud, R. Ben, Chaabane, C. Jouve, and M. Gamoudi, “Transient behavior of thin film transistors based on nickel phthalocyanine,” Thin Solid Films, vol. 258, pp. 279–282 (1995)Google Scholar
  91. [91]
    J. R. Burns, “Large-signal transient time effects in the MOS transistor,” RCA Review, vol. 30, pp. 15–35 (1969)Google Scholar
  92. [92]
    R. Street, A. Salleo, D. Knipp, and A. Vokel, “Transient conductance in organic transistors,” 44 th Electronic Materials Conference Digest, p. 15, Santa Barbara, CA (2002)Google Scholar
  93. [93]
    S. Scheinert, G. Paasch, S. Pohlmann, H.-H. Hörhold, and R. Stockmann, “ Field effect in organic devices with solution-doped arylamino-poly-(phenylene-vinylene),” Solid State Electronics, vol. 44, pp. 845–853 (2000)Google Scholar
  94. [94]
    Y. S. Lee, H. H. Park, and J. S. Choi, “Electrical characteristics of pentacene-based Schottky diodes,” Optical Materials, vol. 21, pp. 433–437 (2002)Google Scholar
  95. [95]
    D. Schroeder, Semiconductor Material and Device Characterization, New York: Wiley (1990)Google Scholar
  96. [96]
    H. K. Henisch, Rectifying Semi-Conductor Contacts, Oxford: Clarendon (1957)MATHGoogle Scholar
  97. [97]
    A. J. Twarowski and A. C. Albrecht, “Depletion layer studies in organic films: Low frequency capacitance measurements in polycrystalline tetracene,” Journal of Chemistry and Physics, vol. 70, pp. 2255–2261 (1979)Google Scholar
  98. [98]
    W. Brutting, H. Riel, T. Beierlein, and W. Riess, “Influence of trapped and interfacial charges in organic multilayer light-emitting devices,” Journal of Applied Physics, vol. 89, pp. 1704–1712 (2001)Google Scholar
  99. [99]
    E. Pinotti, A. Sassella, A. Borghesi, and R. Paolesse, “Characterization of organic semiconductors by a large-signal capacitance-voltage method at high and low frequencies,” Synthetic Metals, vol. 138, pp. 15–19 (2003)Google Scholar
  100. [100]
    J. R. Macdonald (ed.), Impedance Spectroscopy, New York: Wiley (1987)Google Scholar
  101. [101]
    P. Bräunlich (ed.), Thermally Stimulated Relaxation in Solids, Berlin: Springer-Verlag (1979)Google Scholar
  102. [102]
    I. Muzikante and E. A. Silinsh, “Investigation of local trapping states in organic molecular crystals by method of thermally modulated space-charge limited current,” Acta Physica Polonica A, vol. 88, pp.389–399 (1995)Google Scholar
  103. [103]
    Y. S. Yang, S. H. Kim, J.-I. Lee, H. Y. Chu, L.-M. Do, H. Lee, J. Oh, T. Zyung, M. K. Ryu, and M. S. Jang, “Deep-level defect characteristics in pentacene organic thin films,” Applied Physics Letters, vol. 80, pp. 1595–1597 (2002)Google Scholar
  104. [104]
    N. Karl, In: Defect Control in Semiconductors, Vol. II, ed. by K. Sumino, North Holland: Elsevier Science Publishing (1999)Google Scholar
  105. [105]
    M. Silver, In: Organic Semiconductors, ed. by J. J. Brophy and J. W. Buttrey, New York: Macmillan (1962)Google Scholar
  106. [106]
    F. Gutmann and L. E. Lyons, (eds.), Organic Semiconductors, New York: Wiley (1967)Google Scholar
  107. [107]
    D. Fox, M. M. Labes, A. Weissberger (eds.), Physics and Chemistry of the Organic Solid State, Vol. III, New York: Wiley (1967)Google Scholar
  108. [108]
    A. Lampert and P. Mark, Current injection in solids, New York: Academic Press (1970)Google Scholar
  109. [109]
    A. Rose, Concepts in Photoconductivity and Allied Problems, New York: Wiley (1963)Google Scholar
  110. [110]
    P. R. L. Malenfant, C. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Applied Physics Letters, vol. 80, pp. 2517–2519 (2002)Google Scholar
  111. [111]
    Y.-Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, and H. E. Katz, “Organic complementary ring oscillators,” Applied Physics Letters, vol. 74, pp. 2714–2716 (1999)Google Scholar
  112. [112]
    B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, “Large-scale complementary integrated circuits based on organic transistors,” Nature, vol. 403, pp. 521–523 (2000)Google Scholar
  113. [113]
    A. Kahn, In: Conjugated Polymer and Molecular Interfaces, W. R. Salaneck, K. Seki, A. Kahn, and J.-J. Pireaux (eds.), New York: Marcel Dekker (2002)Google Scholar
  114. [114]
    I. Campbell and D. L. Smith, In: Conjugated Polymer and Molecular Interfaces, W. R. Salaneck, K. Seki, A. Kahn, and J.-J. Pireaux (eds.), New York: Marcel Dekker (2002)Google Scholar
  115. [115]
    N. J. Wilkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals,” Applied Physics Letters, vol. 80, pp. 4384–4386 (2002)Google Scholar
  116. [116]
    P. G. Schroeder, D. B France, J. B. Park, and B. A. Parkinson, “Energy level alignment and two-dimensional structure of pentacene on Au (111) surfaces,” Journal of Applied Physics, vol. 91, pp. 3010–3013 (2002)Google Scholar
  117. [117]
    N. Koch, A. Elschner, J. Schwartz, and A. Kahn, “Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current-voltage characteristics,” Applied Physics Letters, vol. 82, pp. 2281–2283 (2003)Google Scholar
  118. [118]
    Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-performance bottom electrode organic thin film transistors,” IEEE Transactions on Electron Devices, vol. 48, pp. 1060–1064 (2001)Google Scholar
  119. [119]
    R. A. Street and A. Salleo, “Contact effects in polymer transistors,” Applied Physics Letters, vol. 81, pp. 2887–2889 (2002)Google Scholar
  120. [120]
    P. V. Necliudov, M. S. Shur, D. J. Gundlach, T. N. Jackson, “Contact resistance in pentacene thin film transistors,” 2001 International Semiconductor Device Research Symposium Conference Digest, pp. 345–348 (2001)Google Scholar
  121. [121]
    P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors,” Solid-State Electronics, vol. 47, pp. 259–262 (2003)Google Scholar
  122. [122]
    H. Klauk, G. Schnmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Solid-State Electronics, vol. 47, pp. 297–301 (2003)Google Scholar
  123. [123]
    G. Horowitz, M. E. Hajlaoui, D. Fichou, and A. E. Kassmi, “Gate voltage dependent mobility for oligothiophene field effect transistors,” Journal of Applied Physics, vol. 85, pp. 3202–3206 (1999)Google Scholar
  124. [124]
    K. Seshadri and C. D. Frisbie, “Potentiometry of an operating organic semiconductor field-effect transistor,” Applied Physics Letters, vol. 78, pp. 993–995 (2001)Google Scholar
  125. [125]
    T. W. Kelley and C. D. Frisbie, “Point contact current-voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy,” Journal of Vacuum Science and Technology B, vol. 18, pp. 632–635 (2000)Google Scholar
  126. [126]
    L. Bürgi, H. Sirringhaus, and R. H. Friend, “Noncontact potentiometry of polymer field-effect transistors,” Applied Physics Letters, vol. 80, pp. 2913–2915 (2002)Google Scholar
  127. [127]
    S. M. Baier, N. C. Cirillo Jr. S. A. Hanka, and M. S. Shur, “Gated Transmission Line Model Structure for Characterization of FETs,” Jan. 20, 1987. United States Patent #4,638,341 (1987)Google Scholar
  128. [128]
    S. Luan and G. W. Neudeck, “An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors,” Journal of Applied Physics, vol. 72, pp. 766–772 (1992)Google Scholar
  129. [129]
    D. J. Gundlach, P. V. Necliudov, M. S. Shur, and T. N. Jackson, “Contact resistance of organic thin film transistors of different designs,” 44 th Electronic Materials Conference Digest, p. 15, Santa Barbara, CA (2002)Google Scholar
  130. [130]
    D. J. Gundlach, L.L. Jia, and T. N. Jackson, “Pentacene Thin Film Transistors With Improved Linear Region Characteristics Using Chemically Modified Source And Drain Electrodes,” IEEE Electron Device Letters, vol. 22, pp. 571–573 (2001)Google Scholar
  131. [131]
    K. Kao and W. Hwang, “Electrical Transport in Solids, ” Oxford: Pergamon Press (1981)Google Scholar
  132. [132]
    C. J. M. Vissenberg, M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Physical Review B, vol. 57, pp. 12964–12967 (1998)Google Scholar
  133. [133]
    S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackson, “Temperature-Independent Transport in High-Mobility Pentacene Transistors,” Applied Physics Letters, vol. 72, pp. 1854–1856 (1998)Google Scholar
  134. [134]
    W. A. Schoonveld, J. Wildeman, D. Fichou, P. A. Bobbert, B. J. van Wees, and T. M. Klapwijk, “Coulomb-blockade transport in single-crystal organic thin-film transistors,” Nature, vol. 404, pp. 977–980 (2000)Google Scholar
  135. [135]
    J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Physical Review, vol. 54, pp. 647–648 (1938)Google Scholar
  136. [136]
    H. B ässler, “Charge transport in disordered organic photoconductors,” Physica Status Solidi B, vol. 175, pp. 15–56 (1993)Google Scholar
  137. [137]
    M. Shur, and M. Hack, “Physics of amorphous silicon based alloy field-effect transistors,” Journal of Applied Physics, vol. 55, pp. 3831–3842 (1984)Google Scholar
  138. [138]
    E. J. Meijer, M. Matters, P. T. Herwig, D. M. de Leeuw, and T. M. Klapwijk, “The Meyer-Nedel rule in organic thin-film transistors,” Applied Physics Letters, vol. 76, pp. 3433–3435 (2002)Google Scholar
  139. [139]
    P. V. Necliudov, M. S. Shur D. J. Gundlach, T. N. Jackson, “Electrical Instabilities and 1/f Noise in Organic Pentacene Thin Film Transistors,” Materials Research Society Symposium Proceedings, vol. 660, p. JJ7.10 (2001)Google Scholar
  140. [140]
    P. Necliudov, S. L. Rumyantsev, M. S. Shur, D. J. Gundlach, and T. N. Jackson, ” 1/f noise in pentacene organic thin film transistors,” Journal of Applied Physics, vol. 88, pp. 5395–5399 (2000)Google Scholar
  141. [141]
    E. G. Guk, M. E. Levinshtein, V. A. Marikhin, L. P. Myasnikova and S. L. Rumyantsev, “Electrical properties of the conducting polydiacetylene poly-1,1,6,6-tetraphenylhexadiinediamine,” Phys. Solid. State, vol. 39, pp. 690–694 (1997)Google Scholar
  142. [142]
    S. Martin, A. Dodabalapur, Z. Bao, B. Crone, H. E. Katz, W. Li, a. Passner, and J. A. Rogers, “Flicker noise properties of organic thin-film transistors,” Journal of Applied Physics, vol. 87, pp. 3381–3383 (2000)Google Scholar
  143. [143]
    M. J. Deen, O. Marinov, J. Yu, S. Holdcroft, and W. Woods, “Low-frequency noise in polymer transistors,” IEEE Transactions on Electron Devices, vol. 48, pp. 1688–1694 (2001)Google Scholar
  144. [144]
    L. K. J. Vandamme, R. Feyaerts, Gy. Trefan, and C. Detcheverry, “1/f noise in pentacene and poly-thiophene vinylene thin film transistors,” Journal of Applied Physics, vol. 91, pp. 719–723 (2002)Google Scholar
  145. [145]
    L. K. J. Vandamme, “Bulk and surface 1/f noise,” IEEE Transactions on Electron Devices, vol. 36, pp. 987–992 (1989)Google Scholar
  146. [146]
    F. N. Hooge, “1/f noise sources,” IEEE Transactions on Electron Devices, vol. 41, pp. 1926–1935(1994)Google Scholar
  147. [147]
    P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Organic thin film transistor models,” 1999 International Semiconductor Device Research Symposium Proceedings, pp. 373–376 (1999)Google Scholar
  148. [148]
    J. Rhayen, M. Valenza, D. Rigaud, N. Szydlo, H. Lebrun, “1/f noise investigations in small channel length amorphous silicon thin film transistors,” Journal of Applied Physics, vol. 83, pp. 3660–3667 (1998)Google Scholar
  149. [149]
    J. Chang, A. A. Abidy, and C. R. Viswanathan, “Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures,” IEEE Transactions on Electron Devices, vol. 41, pp. 1965–1971 (1994)Google Scholar
  150. [150]
    P. Ostoja, S. Guerri, M. Impronta, P. Zabberoni, R. Danieli, S. Rossini, C. Taliani, and R. Zamboni, “Instability in electrical performance of organic semiconductor devices,” Advanced Materials for Optical Electronics, vol. 1, pp. 127–132 (1992)Google Scholar
  151. [151]
    M. Matters, D. M. de Leeuw, P. T. Herwig, and A. R. Brown, “Bias-stress induced instability of organic thin film transistors,” Synthetic Metals, vol. 102, pp. 998–999 (1999)Google Scholar
  152. [152]
    S. J. Zilker, C. Detcheverry, E. Cantatore, and D. M. de Leuuw, “Bias stress in organic thin-film transistors and logic gates,” Applied Physics Letters, vol. 79, pp. 1124–1126 (2001)Google Scholar
  153. [153]
    C. Chiang, J. Kanicki, and K. Takechi, “Electrical instability of hydrogenated amorphous silicon thin-film transistors for active-matrix liquid-crystal displays,” Japanese Journal of Applied Physics, vol. 37, pp. 4704–4710 (1998)Google Scholar
  154. [154]
    D. B. Slater, Jr., L. A. Larkin, G. M. Johnson, A. V. Suvorov, and J. W. Palmour, “High temperature enhancement-mode NMOS and PMOS devices and circuits in 6H-SIC,” 53rd Annual Device Research Conference Digest, pp. 100–101, University of Virginia (1995)Google Scholar
  155. [155]
    P. V. Necliudov, S. L. Rumyantsev, M. S. Shur, D. J. Gundlach, and T. N. Jackson, submitted to Applied Physics Letters. Google Scholar
  156. [156]
    K. Lee, M.S. Shur, T.A Fjeldly, T. Ytterdal, Semiconductor Device Modeling for VLSI, Prentice Hall, pp. 301–306 (1993)Google Scholar
  157. [157]
    B. Iñi guez, T. A. Fjeldly, and M. S. Shur, “Thin Film Transistor Modeling,” in Silicon and Beyond: Advanced Device Models and Circuit Simulators, M. S. Shur and T. A. Fjeldly (eds.), World Scientific, pp. 33–54 (2000)Google Scholar
  158. [158]
    K. Lee, M.S. Shur, T.A Fjeldly, T. Ytterdal, Semiconductor Device Modeling for VLSI, Prentice Hall (1993)Google Scholar
  159. [159]
    J. E. Meyer, “MOS Models and Circuit Simulation”, RCA Review, vol. 32, pp. 42–63 (1971)Google Scholar
  160. [160]
    M. Shur, M. Hack, and J.G. Shaw, “A new analytical model for amorphous silicon thin-film transistors,” Journal of Applied Physics, vol. 66, pp. 3371–3380 (1989)Google Scholar
  161. [161]
    M. Shur, M. Jacunski, H. Slade, M. Hack, “Analytical Models for a-Si and Poly-Si TFTs for High-definition Display Technology,” Journal of the Society for Information Display, vol. 3, pp. 223–236 (1995)Google Scholar

4.2.10 Section 4.2 References

  1. [1]
    T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, eds., Handbook of Conducting Polymers, New York: Marcel Dekker Inc. (1998)Google Scholar
  2. [2]
    A. J. Heeger, Review of Modern Physics, vol. 73, p. 681 (2001)Google Scholar
  3. [3]
    C. D. Dimitrakopoulos and D. J. Mascaro, IBM Journal of Research And Development, vol. 45, p. 11 (2001)Google Scholar
  4. [4]
    G. Horowitz, Advanced Materials, vol. 10, p. 365 (1998)Google Scholar
  5. [5]
    S. M. Sze, Physics of Semiconductor Devices, New York: John Wiley and Sons (1981)Google Scholar
  6. [6]
    J. Kanicki and S. Martin, “Hydrogenated amorphous silicon thin-film transistors,” in Thin-Film Transistors, eds. C. R. Kagan and P. Andry, New York: Marcel Dekker, Inc. (2003)Google Scholar
  7. [7]
    C. D. Dimitrakopoulos, “Vacuum-Deposited Organic Thin-Film Field-Effect Transistors Based on Small Molecules,” in Thin-Film Transistors, eds. C. R. Kagan and P. Andry, Marcel Dekker, Inc., New York (2003)Google Scholar
  8. [8]
    G. Merckel and A. Rolland, Solid State Electronics, vol. 39, p. 1231 (1986)Google Scholar
  9. [9]
    T. Leroux, Solid State Electronics, vol. 29, p. 47 (1986)MathSciNetGoogle Scholar
  10. [10]
    M. Shur, M. Hack, and J.G. Shaw, Journal of Applied Physics, vol. 66, p. 3371 (1989)Google Scholar
  11. [11]
    G. Horowitz, Journal of Applied Physics, vol. 70, p. 469 (1991)Google Scholar
  12. [12]
    H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Applied Physics Letters, vol. 77, p. 406 (2000)Google Scholar
  13. [13]
    T. Kawase, C. Newsome, S. Inoue, T. Saeki, H. Kawai, S. Kanbe, T. Shimoda, H. Sirringhaus, D. Mackenzie, S. Burns and R. Friend, Proceedings of SID’ 02, p. 1017(2002)Google Scholar
  14. [14]
    H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, vol. 290, p. 2123 (2000)Google Scholar
  15. [15]
    S. Martin, J.-Y. Nahm, and J. Kanicki, Journal of Electronic Materials, vol. 31-5, p. 512(2002)Google Scholar
  16. [16]
    C. Van Berkel, J. R. Hugues, and M. J. Powell, Journal of Applied Physics, vol. 66, p. 4488 (1989)Google Scholar
  17. [17]
    G. Horowitz, R. Hajlaoui, D. Fichou, and A. El Kassmi, Journal of Applied Physics, vol. 85, p. 3202 (1999)Google Scholar
  18. [18]
    A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, Synthetic Metals, vol. 88, p. 37(1997)Google Scholar
  19. [19]
    S. Martin, C.-S. Chiang, J.-Y. Nahm, T. Li, J. Kanicki, and Y. Ugai, Japanese Journal of Applied Physics, vol. 40, p. 530 (2001)Google Scholar
  20. [20]
    R. F. Pierret “Field-Effect Devices,” Modular Series on Solid State Devices, vol. IV, Addison-Wesley Publishing Company, Reading, Massachusetts (1990)Google Scholar
  21. [21]
    A. Rolland, J. Richard, J.-P. Kleider and D. Mencaraglia, Journal of the Electrochemistry Society, vol. 140, p. 3679 (1993)Google Scholar
  22. [22]
    R. A. Street and A. Salleo, Applied Physics Letters, vol. 81, p. 2887 (2002)Google Scholar
  23. [23]
    P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, Solid State Electronics, vol. 47, p. 259 (2003)Google Scholar
  24. [24]
    J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, Journal of Applied Physics, vol. 69, p. 2339 (1991)Google Scholar
  25. [25]
    S. Luan and G. W. Neudeck, Journal of Applied Physics, vol. 72, p. 766 (1992)Google Scholar
  26. [26]
    S. Martin, M. Hamilton, and J. Kanicki, Proceedings of the International Display Research Conference 2002, p. 25 (2002)Google Scholar
  27. [27]
    C.-Y. Chen and J. Kanicki, Solid-State Electronics, vol. 42, p. 705 (1998)Google Scholar
  28. [28]
    P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, Journal of Applied Physics, vol. 88, p. 6594 (2000)Google Scholar
  29. [29]
    S. Kishida, Y. Naruke, Y. Uchida and M. Matsumura, Japanese Journal of Applied Physics, vol. 22, p. 511 (1983)Google Scholar
  30. [30]
    S. Martin, J. Kanicki, and Y. Ugai, Proceedings of the International Display Research Conference 1999, p. 45 (1999)Google Scholar
  31. [31]
    T. Tiedje and A. Rose, Solid State Communications, vol. 37, p. 49 (1980)Google Scholar
  32. [32]
    S. Martin, Y. Feillens, and J. Kanicki, Proceedings of the International Display Research Conference 2000, p. 127 (2000)Google Scholar
  33. [33]
    M. C. J. M. Wissenberg and M. Matters, Physical Review B, vol. 57, p. 12964 (1998)Google Scholar
  34. [34]
    C. Detcheverry and M. Matters, Proceedings of ESSDERC’OO Conference, p. 328 (2000)Google Scholar
  35. [35]
    E. J. Meijer, M. Matters, P. T. Herwig, D. M. de Leeuw, and T. M. Klapwijk, Applied Physics Letters, vol. 76, p. 3433 (2000)Google Scholar
  36. [36]
    K. Waragai, H. Akimichi, S. Hotta, H. Kano and H. Sasaki, Physical Review B, vol. 52, p. 1786 (1995)Google Scholar
  37. [37]
    C. P. Jarrett, A. R. Brown, R. H. Friend, M. G. Harrison, D. M. de Leeuw, P. Herwig, and K. Mullen, Synthetic Metals, vol. 85, p. 1403 (1997)Google Scholar
  38. [38]
    J. H. Schön and B. Batlogg, Applied Physics Letters, vol. 74, p. 260 (1999)Google Scholar
  39. [39]
    E. J. Meijer, D. B. A. Rep, D. M. de Leeuw, M. Matters, P. T. Herwig, and T. M. Klapwijk, Synthetic Metals, vol. 121, p. 1351 (2001)Google Scholar
  40. [40]
    G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, Journal of Applied Physics, vol. 87, p. 4456 (2000)Google Scholar
  41. [41]
    S. F. Nelson, Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, Applied Physics Letters, vol. 72, p. 1854 (1998)Google Scholar
  42. [42]
    L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung and H. E. Katz, Science, vol. 272, p. 1462 (1996)Google Scholar
  43. [43]
    J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf, Advanced Functional Materials, vol. 13, p. 199 (2003)Google Scholar
  44. [44]
    G. Horowitz, X.-Z. Peng, D. Fichou, and F. Gamier, Synthetic Metals, vol. 51, p. 419 (1992)Google Scholar
  45. [45]
    Z. Bao, V. Kuck, J. A. Rogers, and M. A. Paczkowski, Advanced Functional Materials, vol. 12, p. 526 (2002)Google Scholar
  46. [46]
    C. D. Dimitrakopoulos and P. R. L. Malenfast, Advanced Materials, vol. 14, p. 99 (2002)Google Scholar
  47. [47]
    H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielson, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Jamssen, E. W. Meijer, P. Herwing, and D. M. de Leeuw, Nature, vol. 401, p. 685 (1999)Google Scholar
  48. [48]
    A. Salteo, M. L. Chabinyc, M. S. Yang, and R. A. Street, Applied Physics Letters, vol. 81, p. 4383 (2002)Google Scholar
  49. [49]
    H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Applied Physics Letters, vol. 77, p. 406 (2000)Google Scholar
  50. [50]
    H. Sirringhaus, R. Friend, T. Kawase, and L. Buergi, “Polymer Transistor Circuits Fabricated by Solution Processing and Direct Printing” in Thin-Film Transistors, eds. C. R. Kagan and P. Andry, Marcel Dekker, Inc., New York (2003)Google Scholar
  51. [51]
    M. Matters, D. M. de Leeuw, P. T. Herwig, and A. R. Brown, Synthetic Metals, vol. 102, p. 998 (1999)Google Scholar
  52. [52]
    S. J. Zilker, C. Detcheverry, E. Cantatore, and D. M. de Leeuw, Applied Physics Letters, vol. 79, p. 1124 (2001)Google Scholar
  53. [53]
    F. R. Libsch and J. Kanicki, Applied Physics Letters, vol. 62, p. 1286 (1993)Google Scholar
  54. [54]
    K. S. Narayan, A. G. Manoj, Th. B. Singh, and A. A. Alagiriswamy, Thin Solid Films, vol. 417, p. 75 (2002)Google Scholar
  55. [55]
    G. Fortunato, L. Mariucci, and C. Reita, “Physics of Metal/Insulator/Amorphous Semiconductor Structures” in Amorphous & Microcrystalline Semiconductor Devices — Materials and Device Physics, edited by J. Kanicki, Boston: Artech House, Inc. (1992)Google Scholar
  56. [56]
    M. Hamilton, S. Martin, and J. Kanicki, to be submitted to IEEE Transactions on Electron Devices (2003)Google Scholar
  57. [57]
    M. Hamilton, S. Martin, and J. Kanicki, “Organic Polymer Phototransistors”, presented at the Electronic Materials Conference 2002.Google Scholar
  58. [58]
    H. Sirringhaus, N. Tessler, and R. H. Friend, Synthetic Metals, vol. 102, p. 857 (1999)Google Scholar

4.3.8 Section 4.3 References

  1. [1]
    A. Dodabalapur, J. Baumbach, K. Baldwin, and H. E. Katz, Applied Physics Letters, vol. 68, pp. 2246–2248 (1996)Google Scholar
  2. [2]
    Z. N. Bao and A. J. Lovinger, Chemistry of Materials, vol. 11, pp. 2607–2612 (1999)Google Scholar
  3. [3]
    H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, and A. Dodabalapur, Nature, vol. 404, pp. 478–481 (2000)Google Scholar
  4. [4]
    A. R. Brown, C. P. Jarrett, D. M. deLeeuw, and M. Matters, Synthetic Metals, vol. 88, pp. 37–55 (1997)Google Scholar
  5. [5]
    A. Dodabalapur, J. Laquindanum, H. E. Katz, and Z. Bao, Applied Physics Letters, vol. 69, pp. 4227–4229 (1996)Google Scholar
  6. [6]
    L. Torsi, A. Dodabalapur, L. Sabbatini, and P. G. Zambonin, Sensors and Actuators, vol. B67, p. 312 (2000)Google Scholar
  7. [7]
    B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature, vol. 403, p. 521–523 (2000)Google Scholar
  8. [8]
    H. Klauk and T. N. Jackson, Solid State Technology, vol. 43, p. 63 (2000)Google Scholar
  9. [9]
    H. E. Katz, Z. Bao, and S. Gilat, Accounts of Chemical Research, vol. 34, p. 359 (2001)Google Scholar
  10. [10]
    H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekharan, W. Wu, and E. P. Woo, Science, vol. 290, pp. 2123–2126 (2000)Google Scholar
  11. [11]
    J. A. Rogers, Z. Bao, A. Dodabalapur, and H. E. Katz, Applied Physics Letters, vol. 75, p. 1010 (1999)Google Scholar
  12. [12]
    B. K. Crone, A. Dodabalapur, R. Sarpeshkar, R. W. Filas, Y. Y. Lin, Z. Bao, J. H. O’Neill, W. Li, and H. E. Katz, Journal of Applied Physics, vol. 89, pp. 5125–5132 (2001)Google Scholar
  13. [13]
    Z. N. Bao and A. J. Lovinger, Chemistry of Materials, vol. 11, pp. 2607–2612 (1999)Google Scholar
  14. [14]
    J. Bharathan and Y. Yang, Applied Physics Letters, vol. 72, pp. 2660–2662 (1998)Google Scholar
  15. [15]
    A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw, Science, vol. 270, pp. 972–974 (1995)Google Scholar
  16. [16]
    Y. Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, and H. E. Katz, Applied Physics Letters, vol. 74, pp. 2714–2716 (1999)Google Scholar
  17. [17]
    B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature, vol. 403, pp. 521–523 (2000)Google Scholar
  18. [18]
    M. Bonse and T. M. Jackson, IEDM Technical Digest, pp. 249–252 Piscataway, New Jersey: Institute of Electrical and Electronic Engineers (1998)Google Scholar
  19. [19]
    C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, Applied Physics Letters, vol. 73, pp. 108–110 (1998)Google Scholar
  20. [20]
    J. A. Rogers, et al., Proceedings of the National Academy of Science, vol. 98, p. 4835 (2001)Google Scholar
  21. [21]
    C. D. Sheraw, et al., Applied Physics Letters, vol. 80, p. 1088 (2002)Google Scholar
  22. [22]
    K. Kane, et al, IEEE Electron Device Letters, vol. 21, p. 534 (2000)Google Scholar
  23. [23]
    B. K. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelperin, H. E. Katz, and Z. Bao, Journal of Applied Physics, vol. 91, p. 10140 (2002)Google Scholar
  24. [24]
    W. Fix, A. Ullmann, J. Ficker, and W. Clemens, Applied Physics Letters, vol. 81, p. 1735(2002)Google Scholar
  25. [25]
    G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, Applied Physics Letters, vol. 77, p. 1487 (2000)Google Scholar
  26. [26]
    Sedra and Smith, Microelectronic Circuits, 4th Edition, Oxford University Press (1998)Google Scholar
  27. [27]
    B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, Applied Physics Letters, vol. 78, p. 2229 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • David J. Gundlach
    • 1
  • Michael S. Shur
    • 2
  • Thomas Jackson
    • 3
  • Jerzy Kanicki
    • 4
  • Sandrine Martin
    • 4
  • Ananth Dodabalapur
    • 5
  • Brain Crone
    • 6
  1. 1.Eidgenössische Technische HochschuleZürichSwitzerland
  2. 2.Rensselaer Polytechnic UniversityTroyUSA
  3. 3.The Pennsylvania State UniversityUniversity ParkUSA
  4. 4.University of MichiganAnn ArborUSA
  5. 5.University of Texas at AustinAustinUSA
  6. 6.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations