Metabolic Regulation of Peroxisomal and Mitochondrial Fatty Acid Oxidation

  • Christiane Van Den Branden
  • Joseph Vamecq
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 544)

Abstract

Glucose and fatty acids are the major metabolic fuels for the cell. Cells possess the entire set of genes for carbohydrate and fat metabolism. Depending on fuel levels, fuel induced hormone secretion and cross talk between metabolic pathways, cells choose between glucose and fatty acid breakdown to provide their energy. During fasting large amounts of fatty acids are set free by the adipose tissue, glucagon level rises and fatty acid oxidation is favoured. Fatty acids are broken down in mitochondria and in peroxisomes. Mitochondria can fully degrade fatty acids into acetyl-CoA units (and eventually to C02 and water in the Krebs cycle); peroxisomes can only chain-shorten fatty acids and produce H202 in this process. In this paper, aspects of short term (metabolic) regulation of fatty acid oxidation are discussed.

Keywords

Carbohydrate Lipase Pyruvate NADH Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auwerx, J., 1999, PPARgamma, the ultimate thrifty gene. Diabetologica 42: 1033–1049.CrossRefGoogle Scholar
  2. Baudhuin, P., 1974, Isolation of rat liver peroxisomes. Methods Enzymol. 31: 356–375.PubMedCrossRefGoogle Scholar
  3. Clarke, S.D., Gasperikova, D., Nelson, C, Lapillonne, A. and Heird, W.C., 2002, Fatty acid regulation of gene expression. A genomic explanation for the benefits of the mediterranean diet. Ann. N.Y. Acad. Sci. 967: 283–298.PubMedCrossRefGoogle Scholar
  4. Coleman, R.A., Lewin, T.M., Van Horn, CG and Gonzalez-Baro, M.R., 2002, Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J. Nutr. 132: 2123–2126.PubMedGoogle Scholar
  5. Crescimanno, M., Armata, M.G., Rausa, L., Gueh, M.C., Nicotra, C. and D’Alessandro, N., 1989, Cardiac peroxisomal enzymes and starvation. Free Radie. Res. Commun. 7: 67–72.CrossRefGoogle Scholar
  6. Foufelle, F. and Ferr¨¦, P., 2002, New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-lc. Biochem. J. 366: 377–391.PubMedCrossRefGoogle Scholar
  7. Hunt, M.C. and Alexson, S.E.H., 2002, The role acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog. Lipid Res. 41: 99–130.PubMedCrossRefGoogle Scholar
  8. Hunt, M.C, Solaas, K., Kase, B.F. and Alexson, S.E., 2002, Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277:1128–1138.PubMedCrossRefGoogle Scholar
  9. Kerckaert, I. and Roels, F., 1986, Myocardial H202 production in the unanaesthetized rat. Influence of fasting, myocardial load and inhibition of superoxide dismutase and monoamine oxidase. Basic Res. Cardiol. 81: 83–91.PubMedCrossRefGoogle Scholar
  10. Liang, X., Le, W., Zhang, D., Schulz, H., 2001, Impact of the mitochondrial enzyme organization on fatty acid oxidation. Biochem. Soc. Trans. 29: 279–282.PubMedCrossRefGoogle Scholar
  11. McGarry, J.D., 2001, Travels with carnitine palmitoyltransferase I: from liver to germ cell with stops in between. Biochem. Soc. Trans. 29: 241–245.PubMedCrossRefGoogle Scholar
  12. Minokoshi, Y., Kim, Y., Peroni, O.D., Fryer, L.G.D., Muller, C, Carling, D. and Kahn, B.B., 2002, Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339–343.PubMedCrossRefGoogle Scholar
  13. Oakes, N.D. and Furler, S.M., 2002, Evaluation of free fatty acid metabolism in vivo. Ann. N. Y.Acad. Sci. 967:217–235.Google Scholar
  14. Premereur, N., Van den Branden, C. and Roels, F., 1986, Cytochrome P-450 dependent H2O2 production demonstrated in vivo. FEBS Letters 199: 19–22.PubMedCrossRefGoogle Scholar
  15. Reddy, J.K. and Hashimoto, T., 2001, Peroxisomal ß-oxidation and peroxisome proliferator-activated receptor a: An adaptive metabolic system. Annu. Rev. Nutr. 21: 193–230.PubMedCrossRefGoogle Scholar
  16. Smith, K.D., Kemp, S., Braiterman, L., Lu, J.F., Wei, H.M., Geraghty, M., Stetten, G., Bergin, J.S., Pevsner, J. and Watkins, P.A., 1999, X-linked adrenoleukodystrophy: genes, mutations, and phenotypes. Neurochem. Res. 24: 521–535.PubMedCrossRefGoogle Scholar
  17. Stremmel, W., Pohl, I., Ring, A. and Herrmann, T., 2001, A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 36: 981–989.PubMedCrossRefGoogle Scholar
  18. Sugden, M.C., Bulmer, K and Holness, M.J., 2001, Fuel-sensing mechanisms integrating lipid and carbohydrate utilization. Biochem. Soc. Trans. 29: 272–278.PubMedCrossRefGoogle Scholar
  19. Van den Branden, C, Kerckaert I. and Roels, F., 1984, Peroxisomal ß-oxidation from endogenous substrates. Biochem. J. 218: 697–702.PubMedGoogle Scholar
  20. Van den Branden, C, Vamecq, J., Dacremont, G., Premereur, N. and Roels, F., 1987, Short and long term influence of phenothiazines on liver peroxisomal fatty acid oxidation in rodents. FEBS Letters 222 : 21–26.PubMedCrossRefGoogle Scholar
  21. Van den Branden, C, Vamecq, J., Verbeelen, D. and Roels, F., 1994, In vivo hydrogen peroxide production in rat remnant kidney. Renal Physiol. Biochem. 17: 240–245.PubMedGoogle Scholar
  22. van der Vusse, G.J., van Bilsen, M., Glatz, J.F., Hasselbamk, D.M. and Luiken, J.J., 2002, Critical steps in cellular fatty acid uptake and utilization. Mol. Cell Biochem. 239: 9–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Christiane Van Den Branden
    • 1
  • Joseph Vamecq
    • 2
  1. 1.Human AnatomyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Inserm, Menrt 1046Université Lille 2LilleFrance

Personalised recommendations