Skip to main content

Abstract

Progressive familial intrahepatic cholestasis (PFIC), as a diagnosis, was for years an omnium-gatherum. The qualifiers of cholestasis in PFIC mean that the liver disease of PFIC does not resolve, but instead persists, and progresses to fibrosis or cirrhosis; that within a family siblings are at risk of developing the same disease as does a proband (although, of course, this in actuality may never occur); and that the intrahepatic biliary tract is not abnormal, an inference —not necessarily correct—from demonstration that the extrahepatic biliary tract is not frankly obstructed. One can see that a misdiagnosed tyrosinemia, for example, lies within these bounds. Clinical data must be reviewed to ensure that usual causes for pediatric liver disease have been adequately assessed before PFIC is invoked, and care must be taken that PFIC is not used too loosely, as a “wastebasket” diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maggiore G, Bernard O, Riely CA, Hadchouel M, Lemonnier A, Alagille D. Normal serum gamma-glutamyl-transpeptidase activity identifies groups of infants with idiopathic cholestasis with poor prognosis. J Pediatr. 1987;111:251–252.

    Article  PubMed  CAS  Google Scholar 

  2. Whitington PF, Freese DK, Alonso EM, Schwarzenberg SJ, Sharp HL. Clinical and biochemical findings in progressive familial intrahepatic cholestasis. J ediatr Gastroenterol Nutr. 1994; 18: 134–141.

    Article  CAS  Google Scholar 

  3. Bove KE, Daugherty CC, Tyson RW, et al. Bile acid synthetic defects and liver disease. Pediatr Dev Pathol. 2000; 3: 1–16.

    Article  PubMed  CAS  Google Scholar 

  4. Tazawa Y, Yamada M, Nakagawa M, Konno T, Tada K. Bile acid profiles in siblings with progressive familial intrahepatic cholestasis: Absence of biliary chenodeoxycholate. J Pediatr Gastroenterol Nutr. 1985; 4: 32–37.

    Article  PubMed  CAS  Google Scholar 

  5. Jacquemin E, Dumont M, Bernard O, Erlinger S, Hadchouel M. Evidence for defective primary bile acid secretion in children with progressive familial intrahepatic cholestasis. Eur J Pediatr. 1994; 153: 424–428.

    Article  PubMed  CAS  Google Scholar 

  6. Bull LN, Carlton VEH, Stricker NL, et al. Genetic and morphologic findings in progressive familial intrahepatic cholestasis (Byler disease [PFIC-1] and Byler syndrome): Evidence for heterogeneity. Hepatology. 1997; 26: 155–164.

    Article  PubMed  CAS  Google Scholar 

  7. Bull LN, van Eijk MJT, Pawlikowska L, et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet. 1998; 18: 219–223.

    Article  PubMed  CAS  Google Scholar 

  8. Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998; 20: 233–238.

    Article  PubMed  CAS  Google Scholar 

  9. Strautnieks S, Byrne J, Knisely A, et al. There must be a third locus for low GGT PFIC [abstract]. Hepatology. 2001; 34: 240A.

    Google Scholar 

  10. Morton DH, Salen G, Batta AK, et al. Abnormal hepatic sinusoidal bile acid transport in an Amish kindred is not linked to FIC1 and is improved by ursodiol. Gastroenterology. 2000; 119: 188–195.

    Article  PubMed  CAS  Google Scholar 

  11. Carlton VEH, Harris BZ, Puffenberger EG, et al. Complex in-heritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003; 34: 91–96.

    Article  PubMed  CAS  Google Scholar 

  12. Luketic VA, Shiffman ML. Benign recurrent intrahepatic cholestasis. Clin Liver Dis. 1999; 3: 509–528.

    Article  PubMed  CAS  Google Scholar 

  13. Eastham KM, McKiernan PJ, Milford DV, et al. ARC syndrome: An expanding range of phenotypes. Arch Dis Child. 2001; 85: 415–420.

    Article  PubMed  CAS  Google Scholar 

  14. Peters J, Lacaille F, Horslen S, et al. Microvillus inclusion disease treated by small bowel transplantation: Development of progressive intrahepatic cholestasis with low serum concentrations of γ-glutamyl transpeptidase activity [abstract]. Hepatology. 2001; 34: 213A.

    Google Scholar 

  15. Kajiwara E, Akagi K, Tsuji H, Murai K, Fujishima M. Low activity of gamma-glutamyl transpeptidase in serum of acute intrahepatic cholestasis. Enzyme. 1991; 45: 39–46.

    PubMed  CAS  Google Scholar 

  16. Jacquemin E, de Vree JML, Cresteil D, et al. The wide spectrum of multidrug resistance 3 deficiency: From neonatal cholestasis to cirrhosis of adulthood. Gastroenterology. 2001; 120: 1448–1458.

    Article  PubMed  CAS  Google Scholar 

  17. Visapää I, Fellman V, Vesa J, et al. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet. 2002; 71: 863–876.

    Article  PubMed  Google Scholar 

  18. Chagnon P, Michaud J, Mitchell G, et al. A missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am J Hum Genet. 2002; 71: 1443–1449.

    Article  PubMed  CAS  Google Scholar 

  19. Aagenaes Ø. Hereditary cholestasis with lymphoedema (Aagenaes syndrome, cholestasis-lymphoedema syndrome): New cases and follow-up from infancy to adult age. Scand J Gastroenterol. 1998; 33: 335–345.

    Article  PubMed  CAS  Google Scholar 

  20. Amedée-Manesme O, Bernard O, Brunelle F, et al. Sclerosing cholangitis with neonatal onset. J Pediatr. 1987; 111: 225–229.

    Article  PubMed  Google Scholar 

  21. Clayton RJ, Iber FL, Ruebner BH, McKusick VA. Byler disease: Fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child. 1969; 117: 112–124.

    PubMed  CAS  Google Scholar 

  22. Summerskill WHJ, Walshe JM. Benign recurrent intrahepatic “obstructive” jaundice. Lancet. 1959; ii: 686–690.

    Article  Google Scholar 

  23. Floreani A, Molaro M, Mottes M, et al. Autosomal dominant benign recurrent intrahepatic cholestasis (BRIC) unlinked to 18q21 and 2q24. Am J Med Genet. 2000; 95: 450–453.

    Article  PubMed  CAS  Google Scholar 

  24. Yabushita K, Yamamoto K, Ibuki N, et al. Aberrant expression of cytokeratin 7 as a histological marker of progression in primary biliary cirrhosis. Liver. 2001; 21: 50–55.

    Article  PubMed  CAS  Google Scholar 

  25. Hanigan MH, Bull LN, Strautnieks SS, et al. Low serum concentrations of γ GT activity in progressive familial intrahepatic cholestasis: Evidence for two different mechanisms in PFIC, type 1 (FIC1 disease) and in PFIC, type 2 (BSEP disease) [abstract]. Hepatology. 2002; 36: 310A.

    Article  Google Scholar 

  26. Eppens EF, van Mil SWC, de Vree JML, et al. FICl, the protein affected in two forms of hereditary cholestasis, is localized in the cholangiocyte and the canalicular membrane of the hepatocyte. J Hepatol. 2001; 35: 436–443.

    Article  PubMed  CAS  Google Scholar 

  27. Phillips MJ, Poucell S, Patterson J, Valencia P. The Liver: An Atlas and Text of Ultrastructural Pathology. New York: Raven Press; 1987.

    Google Scholar 

  28. Klomp LWJ, Bull LN, Knisely AS, et al. A missense mutation in FIC1 is associated with Greenland familial cholestasis. Hepatology. 2000; 32: 1337–1441.

    Article  PubMed  CAS  Google Scholar 

  29. Chen HL, Chang PS, Hsu HC, et al. FICl and BSEP defects in Taiwanese patients with chronic intrahepatic cholestasis with low gamma-glutamyltranspeptidase levels. J Pediatr. 2002; 140: 119–124.

    Article  PubMed  CAS  Google Scholar 

  30. Chatila R, Bergasa NV, Lagarde S, West AB. Intractable cough and abnormal pulmonary function in benign recurrent intrahepatic cholestasis. Am J Gastroenterol. 1996; 91: 2215–2219.

    PubMed  CAS  Google Scholar 

  31. Cissarek T, Schumacher B, Schwöbel H, Sarbia M, Neuhaus H. Verlauf einer benignen rekurrierenden intrahepatischen Cholestase (Summerskill-Walshe-Tygstrup-Syndrom) über 46 Jahre. Z astroenterol 1998; 36: 379–383.

    CAS  Google Scholar 

  32. Berman L, Markowitz J, Kahn E, et al. Benign recurrent intrahepatic cholestasis and progressive familial intrahepatic cholestasis linked to PFIC1: Points on a continuum [abstract]. Hepatology. 1997; 26: 384A.

    Google Scholar 

  33. van Ooteghem NAM, Klomp LWJ, van Berge-Henegouwen GP, Houwen RHJ. Benign recurrent intrahepatic cholestasis progressing to progressive familial intrahepatic cholestasis: Low GGT cholestasis is a clinical continuum. J epatol. 2002; 36: 439–443.

    Google Scholar 

  34. Tygstrup N, Steig BA, Juijn JA, Bull LN, Houwen RHJ. Recurrent familial intrahepatic cholestasis in the Faeroe Islands: Phenotypic heterogeneity but genetic homogeneity. Hepatology. 1999; 29: 506–508.

    Article  PubMed  CAS  Google Scholar 

  35. Knisely AS, Jaffe R, Lefkowitch J, Markin RS, Portmann B. Biliary metaplasia of centrilobular hepatocytes in progressive familial intrahepatic cholestasis, type 1 [abstract]. Lab Invest. 2001; 81: 198A.

    Google Scholar 

  36. Kurbegov AC, Setchell KDR, Haas J, et al. Biliary diversion for progressive familial intrahepatic cholestasis: Improved liver morphology and bile acid profile. Gastroenterology. 2003; 125: 1227–1234.

    Article  PubMed  Google Scholar 

  37. Lloyd-Still JD. Familial cholestasis with elevated sweat electrolyte concentrations. J Pediatr. 1981; 99: 50–583.

    Google Scholar 

  38. Bourke B, Goggin N, Walsh D, Kennedy S, Setchell KDR, Drumm B. Byler-like familial cholestasis in an extended kindred. Arch Dis Child. 1996; 75: 223–227.

    Article  PubMed  CAS  Google Scholar 

  39. Knisely AS, Agostini RM, Zitelli BJ, Kocoshis SA, Boyle JT. Byler’s syndrome [letter]. Arch Dis Child. 1997: 77: 276–277.

    Article  PubMed  CAS  Google Scholar 

  40. Oshima T, Ikeda K, Takasaka T. Sensorineural hearing loss associated with Byler disease. Tohoku J Exp Med. 1999; 187: 83–88.

    Article  PubMed  CAS  Google Scholar 

  41. Winklhofer-Roob BM, Shmerling DH, Soler R, Briner J. Progressive idiopathic cholestasis presenting with profuse watery diarrhoea and recurrent infections (Byler’s disease). Acta Paediatr. 1992; 81: 637–640.

    Article  PubMed  CAS  Google Scholar 

  42. Knisely AS, Abukawa D, Bull LN, et al. Enterocyte inclusions are associated with diarrhea in both genetically documented progressive familial intrahepatic cholestasis, type 1, and intrahepatic cholestasis characterized by coarsely granular Byler bile [abstract]. Hepatology. 2000; 32: 211 A.

    Google Scholar 

  43. Egawa H, Yorifuji T, Sumazaki R, Kimura A, Hasegawa M, Tanaka K. Intractable diarrhea after liver transplantation for Byler’s disease: Successful treatment with bile adsorptive resin. Liver Transp1. 2002; 8: 714–716.

    Article  Google Scholar 

  44. Oude Elferink R, Pawlikowska L, Looije N, et al. Defective regulation of ASBT activity in FIC1 mutant mice [abstract]. Hepatology. 2002; 36: 334A.

    Google Scholar 

  45. Bhagat G, Lobritto SJ, Lefkowitch JH, et al. Allograft steatosis is a feature of progressive familial intrahepatic cholestasis, type 1 [FIC1 disease), treated by orthotopic liver transplantation (OLTX) [abstract]. Hepatology. 2001; 34: 209A.

    Google Scholar 

  46. Lykavieris P, van Mil S, Cresteil D, et al. Progressive familial intrahepatic cholestasis type 1 and extrahepatic features: no catch-up of stature growth, exacerbation of diarrhea, and appearance of liver steatosis after liver transplantation. J epatol. 2003; 39: 447–452.

    Google Scholar 

  47. Ujhazy P, Ortiz D, Misra S, et al. Familial intrahepatic cholestasis 1: Studies of localization and function. Hepatology. 2001; 34: 768–775.

    Article  PubMed  CAS  Google Scholar 

  48. Gordon FH, Harrison PM, Bull LN, et al. Intrahepatic cholestasis of pregnancy with clinical-biochemistry, bile-composition, and morphologic features of FIC1 disease [abstract]. Hepatology. 2002; 36: 491A.

    Google Scholar 

  49. Bull LN, Vargas J, Sandoval L, et al. Screening of ATP8B1 (FIC1) in Chilean patients with cholestasis of pregnancy [abstract]. Hepatology. 2002; 36: 337A

    Google Scholar 

  50. Jansen PLM, Strautnieks SS, Jacquemin E, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology. 1999; 117: 1370–1379.

    Article  PubMed  CAS  Google Scholar 

  51. Alonso EM, Snover DC, Montag A, Freese DK, Whitington PF. Histologic pathology of the liver in progressive familial intrahepatic cholestasis, f Pediatr Gastroenterol Nutr. 1994; 18: 128–133.

    Article  CAS  Google Scholar 

  52. Scheimann AO, Karntakal W, Strautnieks SS, et al. Presence of mutations in the bile salt excretory pump gene in two families with cholangiocarcinoma and PFIC [abstract]. Hepatology. 2001; 34: 208A.

    Google Scholar 

  53. Kullak-Ublick GA, Kerb R, Müllhaupt B, et al. A novel R432T mutation in the bile salt export pump gene [BSEP-, ABCB11) is associated with recurrent intrahepatic cholestasis in an adoles-cent patient [abstract]. Hepatology. 2001; 34: 216A.

    Google Scholar 

  54. Strautnieks S, Soler E, Byrne J, Baker A, Vergani G, Thompson R. A novel syndrome: Progressive familial intrahepatic cholesta-sis associated with short stature, coloboma and cleft palate [ab-stract]. Hepatology. 2001; 34: 214A.

    Google Scholar 

  55. Stieger B, Fattinger K, Madon J, Kullak-Ublick GA, Meier PJ. Drug-and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gas-troenterology. 2000; 118: 422–430.

    Article  CAS  Google Scholar 

  56. Kipp H, Pichetshote N, Arias IM. Transporters on demand: In-trahepatic pools of canalicular ATP binding’cassette transporters in rat liver. J Biol Chem. 2001; 276: 7218–7224.

    Article  PubMed  CAS  Google Scholar 

  57. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor J bile acid receptor. J Biol Chem. 2001; 276: 28857–28865.

    Article  PubMed  CAS  Google Scholar 

  58. Setchell KDR, Heubi JE, O’Connell NC, Hofmann AF, Lavine JE. Identification of a unique inborn error in bile acid conjuga-tion involving a deficiency in amidation [abstract]. In: Paumgartner G, Strehl A, Gerok W, eds. Bile Acids in Hepatobiliary Diseases-Basic Research and Clinical Application. Proceed-ings. Falk Symposium 93. Dordrecht: Kluwer; 1997: 43–47.

    Google Scholar 

  59. Shneider BL, Fox VL, Schwarz KB, et al. Hepatic basolateral so-dium-dependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia. Hepatology. 1997; 25: 1176–1183.

    Article  PubMed  CAS  Google Scholar 

  60. Maksimak M, O’Connell NC, Setchell KDR, et al. Evidence for a novel form of progressive familial intrahepatic cholestasis in a child of Amish descent [abstract]. Hepatology. 1997; 26: 555A.

    Google Scholar 

  61. Nezelof C, Dupart MC, Jaubert F, Eliachar E. A lethal familial syndrome associating arthrogryposis multiplex congenita, renal dysfunction, and a cholestatic and pigmentary liver disease. J Pediatr. 1979; 94: 258–260.

    Article  PubMed  CAS  Google Scholar 

  62. Hanigan MH, Barbar M, Cullinane C, et al. Decreased expression of gamma-glutamyl transpeptidase at the bile canaliculus in arthrogryposis-renal dysfunction-cholestasis syndrome [abstract]. Lab Invest. 2003; 83: 301A.

    Google Scholar 

  63. Phillips AD, Schmitz J. Familial microvillous atrophy: A clini-copathological survey of 23 cases. J Pediatr Gastroenterol Nutr. 1992; 14: 380–396.

    Article  PubMed  CAS  Google Scholar 

  64. Reinshagen K, Nairn HY, Zimmer KP. Autophagocytosis of the apical membrane in microvillus inclusion disease. Gut. 2002; 51: 514–521.

    Article  PubMed  CAS  Google Scholar 

  65. Bunn SK, Beath SV, McKiernan PJ, et al. Treatment of mi-crovillus inclusion disease by intestinal transplantation. J Pedi-atr Gastroenterol Nutr. 2000; 31: 176–180.

    Article  CAS  Google Scholar 

  66. Rhoads JM, Vogler RC, Lacey SR, et al. Microvillus inclusion disease: In vitro jejunal electrolyte transport. Gastroenterology. 1991; 100: 811–817.

    PubMed  CAS  Google Scholar 

  67. Honda A, Salen G, Shefer S, et al. Bile acid synthesis in the Smith-Lemli-Opitz syndrome: Effects of dehydrocholesterols on cholesterol 7a-hydroxylase and 27-hydroxylase activities in rat liver. J Lipid Res. 1999; 40: 1520–1528.

    PubMed  CAS  Google Scholar 

  68. Grange DK, deMello DE, Hart MH, et al. Cholestatic liver disease in Smith-Lemli-Opitz syndrome [abstract], Proc Greenwood Genet Center. 2002; 21: 48–49.

    Google Scholar 

  69. Brosius U, Gartner J. Cellular and molecular aspects of Zellweger syndrome and other peroxisome biogenesis disorders. Cell Mol Life Sci. 2002; 59: 1058–1069.

    Article  PubMed  CAS  Google Scholar 

  70. Clayton PT, Leonard JV, Lawson AM, et al. Familial giant cell hepatitis associated with synthesis of 3β, 7α-dihydroxy-and 3β, 7α, 12α-trihydroxy-5-cholenoic acids. J Clin Invest. 1987; 79: 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  71. Setchell KDR, Suchy FJ, Welsh MB, Zimmer-Nechemias L, Heubi J, Balistreri WF. 4-3-oxosteroid 5β-reductase deficiency described in identical twins with neonatal hepatitis: A new inborn error in bile acid synthesis. J lin Invest. 1988; 82: 2148–2157.

    Article  CAS  Google Scholar 

  72. Buchmann MS, Kvittingen EA, Nazer H, et al. Lack of 3β-hydroxy-?5-C27-steroid dehydrogenase J isomerase in fibroblasts from a child with urinary excretion of 3β-hydroxy-A5 bile acids: A new inborn error of metabolism. J lin Invest. 1990; 86: 2034–2037.

    Article  CAS  Google Scholar 

  73. Jacquemin E, Setchell KDR, O’Connell NC, et al. A new cause of progressive intrahepatic cholestasis: 3J3-hydroxy-C27-steroid dehydrogenase / isomerase deficiency. J Pediatr. 1994; 125: 379–384.

    Article  PubMed  CAS  Google Scholar 

  74. Setchell KDR, Schwarz M, O’Connell NC, et al. Identification of a new inborn error in bile acid synthesis: Mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J lin Invest. 1998; 102: 1690–1703.

    Article  CAS  Google Scholar 

  75. Clayton PT, Verrips A, Sistermans E, Mann A, Mieli-Vergani G, Wevers R. Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inher Metab Dis. 2002; 25: 501–513

    Article  PubMed  CAS  Google Scholar 

  76. Setchell KDR, Heubi JE, Bove KE, et al. Liver disease caused by failure to racemize trihydroxycholestanoic acid: Gene mutation and effect of bile acid therapy. Gastroenterology. 2003; 124: 217–232.

    Article  PubMed  Google Scholar 

  77. Akobeng AK, Clayton PT, Miller V, Super M, Thomas AG. An inborn error of bile acid synthesis (3J3-hydroxy-A5-C27-steroid dehydrogenase deficiency) presenting as malabsorption leading to rickets. Arch Dis Child. 1999; 80: 463–465.

    Article  PubMed  CAS  Google Scholar 

  78. Shneider BL, Setchell KD, Whitington PF, Neilson KA, Suchy FJ. 4-3-oxosteroid 5β-reductase deficiency causing neonatal liver failure and hemochromatosis. J Pediatr. 1994; 124: 234–238.

    Article  PubMed  CAS  Google Scholar 

  79. Siafakas CG, Jonas MM, Perez-Atayde AR. Abnormal bile acid metabolism and neonatal hemochromatosis: A subset with poor prognosis. J ediatr Gastroenterol Nutr. 1997; 25: 321–326.

    Article  CAS  Google Scholar 

  80. Clayton PT. A4-3-oxosteroid 5β-reductase deficiency and neonatal hemochromatosis [letter]. J Pediatr. 1994; 125: 845–846.

    PubMed  CAS  Google Scholar 

  81. Kondo KH, Kai MH, Setoguchi Y, et al. Cloning and expression of cDNA of human A4-3-oxosteroid 5β-reductase and substrate specificity of the expressed enzyme. Eur J Biochem. 1994; 219: 357–363.

    Article  PubMed  CAS  Google Scholar 

  82. Cheng JB, Jacquemin E, Gerhardt M, et al. Molecular genetics of 3β-hydroxy-?5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J lin Endocrinol Metab. 2003; 88: 1833–1841.

    Article  CAS  Google Scholar 

  83. Vos TA, Hooiveld GJ, Koning H, et al. Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology. 1998; 28: 1637–1644.

    Article  PubMed  CAS  Google Scholar 

  84. de Vree JML, Jacquemin E, Sturm E, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA. 1998; 95: 282–287.

    Article  PubMed  Google Scholar 

  85. Rosmorduc O, Hermelin B, Poupon R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology. 2001; 120: 1459–1467.

    Article  PubMed  CAS  Google Scholar 

  86. Jacquemin E, Cresteil D, Manouvrier S, Boute O, Hadchouel M. Heterozygous non-sense mutation of the MDR3 gene in familial intrahepatic cholestasis of pregnancy. Lancet. 1999; 353: 210–211.

    Article  PubMed  CAS  Google Scholar 

  87. Dixon PH, Weerasekera N, Linton KJ, et al. Heterozygous MDR3 missense mutation associated with intrahepatic cholestasis of pregnancy: Evidence for a defect in protein trafficking. Hum Mol Genet. 2000; 9: 1209–1217.

    Article  PubMed  CAS  Google Scholar 

  88. Simon E, Marschall H-U, Glantz A, Rath W, Matern S, Lammert F. Mutations of hepatocanalicular ABC transporters in intrahepatic cholestasis of pregnancy (ICP) [abstract]. Hepatology. 2002; 36: 335A.

    Article  Google Scholar 

  89. Strautnieks S, Knisely AS, Gerred S, et al. Mutations in MDR3 in adult onset cholangiopathy. In: Keppler D, Leuschner U, Paumgartner G, Stiehl A, eds. Bile Acids: From Genomics to Disease and Therapy. Proceedings, Falk Symposium 129. Dordrecht: Kluwer; 2003: 184–192.

    Google Scholar 

  90. Rapola J, Heikkila P, Fellman V. Pathology of lethal fetal growth retardation syndrome with aminoaciduria, iron overload, and lactic acidosis (GRACILE). Pediatr Pathol Mol Med. 2002; 21: 183–193.

    Article  PubMed  Google Scholar 

  91. Drouin E, Russo P, Tuchweber B, Mitchell G, Rasquin-Weber A. North American Indian cirrhosis in children: A review of 30 cases. J Pediatr Gastroenterol Nutr. 2000; 31: 395–404.

    Article  PubMed  CAS  Google Scholar 

  92. Weber AM, Tuchweber B, Yousef I, et al. Severe familial cholestasis in North American Indian children: A clinical model of microfilament dysfunction? Gastroenterology. 1981; 81: 653–662.

    PubMed  CAS  Google Scholar 

  93. Smith BM, Laberge JM, Schreiber R, Weber AM, Blanchard H. Familial biliary atresia in three siblings including twins. J Pediatr Surg. 1991; 26: 1331–1333.

    Article  PubMed  CAS  Google Scholar 

  94. Phillips MJ, Ackerley CA, Superine RA, Roberts EA, Filler RM, Levy GA. Excess zinc associated with severe progressive cholestasis in Cree and Ojibwa-Cree children. Lancet. 1996; 347: 866–868.

    Article  PubMed  CAS  Google Scholar 

  95. Bull LN, Roche E, Song EJ, et al. Mapping of the locus for cholestasis-lymphedema syndrome (Aagenaes syndrome) to a 6.6-cM interval on chromosome 15q. Am J Hum Genet. 2000; 67: 994–999.

    Article  PubMed  CAS  Google Scholar 

  96. Frühwirth M, Janecke AR, Müller T, et al. Evidence for genetic heterogeneity in lymphedema-cholestasis syndrome. J Pediatr. 2003; 142: 441–447.

    Article  PubMed  CAS  Google Scholar 

  97. Baker AJ, Portmann B, Westaby D, Wilkinson M, Karani J, Mowat AP. Neonatal sclerosing cholangitis in two siblings: A category of progressive intrahepatic cholestasis. J ediatr Gastroenterol Nutr. 1993; 17: 317–322.

    Article  CAS  Google Scholar 

  98. Ewart-Toland A, Enns GM, Cox VA, Mohan GC, Rosenthal P, Golabi M. Severe congenital anomalies requiring transplantation in children with Kabuki syndrome. Am J Med Genet. 1998; 80: 362–367.

    Article  PubMed  CAS  Google Scholar 

  99. Baala L, Hadj-Rabia S, Hamel-Teillac D, et al. Homozygosity mapping of a locus for a novel syndromic ichthyosis to chromosome 3q27-q28. J Invest Dermatol. 2002; 119: 70–76.

    Article  PubMed  CAS  Google Scholar 

  100. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase(UGT1A1) causing Crigler-Najjar and Gilbert syndromes: Correlation of genotype to phenotype. Hum Mutat. 2000; 16: 297–306.

    Article  PubMed  CAS  Google Scholar 

  101. Paulusma CC, Kool M, Bosma PJ, et al. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology. 1997; 25: 1539–1542.

    Article  PubMed  CAS  Google Scholar 

  102. Kikuchi S, Hata M, Fukumoto K, et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet. 2002; 31: 320–325.

    Article  PubMed  CAS  Google Scholar 

  103. Wolkoff AW, Wolpert E, Pascasio FN, Arias IM. Rotor’s syndrome: A distinct inheritable pathophysiologic entity. Am J Med. 1976; 60: 173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knisely, A.S. (2004). Hepatocellular and Familial Cholestasis. In: Russo, P., Ruchelli, E.D., Piccoli, D.A. (eds) Pathology of Pediatric Gastrointestinal and Liver Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9066-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9066-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6492-7

  • Online ISBN: 978-1-4419-9066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics