Skip to main content

Humbert’s Conic Model and the Kummer Surface

  • Chapter
Number Theory
  • 496 Accesses

Abstract

In his Cours d’Analyse in 1904, Georges Humbert used the parametrization of a pencil of conics through four points by the Weierstrass p-function to prove theorems of geometry and mechanics. This method is implicit in his earlier applications of Kummer surfaces, for instance his criterion for real multiplication by \( \sqrt 2 \) uses the special “quarter-period” configuration in the pencil.

Presented at the New York Number Theory Seminar 6 Nov. 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Appell, Sur les fonctions périodiques de deux variables, Journ. de Math. (4) 7 (1891), 157–219.

    MathSciNet  Google Scholar 

  2. P. Bending, Curves of genus 2 with \( \sqrt 2 \) multiplication; (unpublished dissertation).

    Google Scholar 

  3. J.W.S. Cassels and E.V. Flynn, “Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2,” Cambridge Univ. Press, 1996.

    Google Scholar 

  4. H. Cohn, A hyperelliptic curve with real multiplication of degree two; (see Contents).

    Google Scholar 

  5. J.D. Fay, “Theta Functions on Riemann Surfaces,” Springer Verlag, 1973; Lect. Notes in Math 352.

    Google Scholar 

  6. E. Hecke, Höhere Modulfunktionen und ihre Anwendung an der Zahlentheorie, Math. Annalen 71 (1912), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.R. Gonzalez-Dorrego, (16,6) configurations and geometry of Kummer surfaces in P3, Memoirs of the AMS 512 (1994).

    Google Scholar 

  8. G. Humbert, Théorie générate des surfaces hyperelliptiques, Journ. de Math. (4) 9 (1893), 27–171, 361–475.

    Google Scholar 

  9. G. Humbert, Sur les fonctions abéliennes singulierès I Journ. de Math. (5) 5 (1899), 233–350.

    Google Scholar 

  10. G. Humbert, “Cours d’Analyse II,” Gauthier-Villars, 1904, pp. 238–249.

    Google Scholar 

  11. H. Lange and C. Birkenhake, “Complex Abelian Varieties,” Springer-Verlag, 1992.

    Google Scholar 

  12. J. Lewittes, Riemann surfaces and the theta function, Acta Mathematica 111 (1964), 37–61.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-F. Mestre, Courbes hyperelliptiques a multiplications réelles, C.R. Acad. Sci. Paris (1) 307 (1988), 721–724.

    MathSciNet  MATH  Google Scholar 

  14. E. Picard, “Quelques Applications Analytiques de la Théorie des Courbes et des Sur?faces Algébriques,” Gauthier-Villars, 1931; (Notes taken by J. Dieudonné).

    Google Scholar 

  15. H. Poincaré, Sur les fonctions abéliennes, Acta Math. 26 (1902), 43–98.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Poonen, Computational aspects of curves of genus at least 2, Algorithmic Number Theory (ANTS II, H. Cohen, ed.) (1996), 283–306; Second International Symposium, Talence, France; Springer-Verlag (Lecture Notes in Computer Science 1122).

    Google Scholar 

  17. G. Salmon, “A Treatise on the Analytic Geometry of Three Dimensions II,” 1914, pp. 50–51; Chelsea Reprint 1965.

    Google Scholar 

  18. C.E. Traynard, “Fonctions Abéliennes et Fonctions Thêta de Deux Variables,” Mém. de Sci. CLI Gauthier-Villars, 1962; (Lectures of P. Painlevé 1902)

    Google Scholar 

  19. J. Wilson, Curves of genus 2 whose Jacobians have a \( \sqrt 5 \) multiplication; (unpublished dissertation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohn, H. (2004). Humbert’s Conic Model and the Kummer Surface. In: Chudnovsky, D., Chudnovsky, G., Nathanson, M. (eds) Number Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9060-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9060-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6490-3

  • Online ISBN: 978-1-4419-9060-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics