Skip to main content

The spanning number and the independence number of a subset of an abelian group

  • Chapter
Number Theory

Abstract

Let A = {a 1, a 2, …, a m } be a subset of a finite abelian group G. We call A t-independent in G, if whenever

$$ \lambda _1 a_1 + \lambda _2 a_2 + ... + \lambda _m a_m = 0 $$

for some integers λ1, λ 2,…, λ m with

$$ |\lambda _1 | + \lambda _2 | + ... + |\lambda _m | \leqslant t, $$

we have λ 1 = λ 2 = … = λ m = 0, and we say that A is s-spanning in G, if every element g of G can be written as

$$ g = \lambda _1 a_1 + \lambda _2 a_2 + ...\lambda _m a_m $$

for some integers λ 1, λ 2, …, λ m with

$$ |\lambda _1 | + |\lambda _2 | + ... + |\lambda _m | \leqslant s. $$

In this paper we give an upper bound for the size of a t-independent set and a lower bound for the size of an s-spanning set in G, and determine some cases when this extremal size occurs. We also discuss an interesting connection to spherical combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bajnok. Construction of spherical t-designs. Geom. Dedicata 43:167–179, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bajnok. Constructions of spherical 3-designs. Graphs Combin., 14/2:97–107, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bajnok and I. Ruzsa. The independence number of a subset of an abelian group. Integers, 3/Paper A2, 23 pp. (electronic), 2003.

    Google Scholar 

  4. E. Bannai. On extremal finite sets in the sphere and other metric spaces. London Math. Soc. Lecture Note Ser., 131:13–38, 1988.

    MathSciNet  Google Scholar 

  5. E. Bannai and R. M. Damerell. Tight spherical designs I. J. Math. Soc. Japan, 31:199–207, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Bannai and R. M. Damerell. Tight spherical designs I. J. London Math. Soc. (2), 21:13–30, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Boumova, P. Boyvalenkov, and D. Danev. New nonexistence results for spherical designs. In B. Bojanov, editor, Constructive Theory of Functions, pages 225–232, Varna, 2002.

    Google Scholar 

  8. P. Delsarte, J. M. Goethals, and J. J. Seidel. Spherical codes and designs. Geom. Dedicata, 6:363–388, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Erdős and R. Freud. A Sidon problémakör. Mat. Lapok, 1991/2:1–44, 1991.

    Google Scholar 

  10. C. D. Godsil. Algebraic Combinatorics. Chapman and Hall, Inc., 1993.

    Google Scholar 

  11. J. M. Goethals and J. J. Seidel. Spherical designs. In D. K. Ray-Chaudhuri, editor, Relations between combinatorics and other parts of mathematics, volume 34 of Proc. Sympos. Pure Math., pages 255–272. American Mathematical Society, 1979.

    Google Scholar 

  12. J. M. Goethals and J. J. Seidel. Cubature formulae, polytopes and spherical designs. In C. Davis, B. Grünbaum, and F. A. Sher, editors, The Geometric Vein: The Coveter Festschrift, pages 203–218. Springer-Verlag New York, Inc., 1981.

    Google Scholar 

  13. S. W. Graham. B h sequences. In B. C. Berndt, H. G. Diamond, and A. J. Hildebrand, editors, Analytic number theory, Vol.1. (Allerton Park, IL, 1995), pages 431–449, Progr. Math. 138, Birkhäuser Boston, Boston, MA, 1996.

    Google Scholar 

  14. R. K. Guy. Unsolved Problems in Number Theory. Second edition. Springer-Verlag New York, 1994.

    MATH  Google Scholar 

  15. H. Halberstam and K. F. Roth. Sequences. Second edition. Springer-Verlag New York — Berlin, 1983.

    Google Scholar 

  16. R. H. Hardin and N. J. A. Sloane. McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom., 15:429–441, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. G. Hoggar. Spherical t-designs. In C. J. Colbourn and J. H. Dinitz, editors, The CRC handbook of combinatorial designs, pages 462–466. CRC Press, Inc., 1996.

    Google Scholar 

  18. Y. Hong. On Spherical t-designs in ℝ2. Europ. J. Combinatorics, 3:255–258, 1982.

    MATH  Google Scholar 

  19. J. Mimura. A construction of spherical 2-design. Graphs Combin., 6:369–372, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. B. Nathanson. Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Springer-Verlag New York, 1996.

    Google Scholar 

  21. B. Reznick. Sums of even powers of real linear forms. Mem. Amer. Math. Soc., 463, 1992.

    Google Scholar 

  22. I. Ruzsa. Solving linear equations in a set of integers I. Acta Arith., 65/3:259–282, 1993.

    MathSciNet  MATH  Google Scholar 

  23. I. Ruzsa. Solving linear equations in a set of integers II. Acta Arith., 72/4:385–397, 1995.

    MathSciNet  MATH  Google Scholar 

  24. J. J. Seidel. Designs and approximation. Contemp. Math., 111:179–186, 1990.

    Article  MathSciNet  Google Scholar 

  25. J. J. Seidel. Spherical designs and tensors. In E. Bannai and A. Munemasa, editors, Progress in algebraic combinatorics, volume 24 of Adv. Stud. Pure Math., pages 309–321. Mathematical Society of Japan, 1996.

    Google Scholar 

  26. P. D. Seymour and T. Zaslavsky. Averaging sets: A generalization of mean values and spherical designs. Adv. Math., 52:213–240, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. D. Wallis, A. P. Street, and J. S. Wallis. Combinatorics: Room Squares, Sum-free Sets, Hadamard Matrices, Lecture Notes in Mathematics, Vol. 292, Part 3. Springer-Verlag, Berlin-New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bajnok, B. (2004). The spanning number and the independence number of a subset of an abelian group. In: Chudnovsky, D., Chudnovsky, G., Nathanson, M. (eds) Number Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9060-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9060-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6490-3

  • Online ISBN: 978-1-4419-9060-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics