Skip to main content

Fitting Invariant Curves on Billiard Tables and the Birkhoff-Herman Theorem

  • Conference paper
New Advances in Celestial Mechanics and Hamiltonian Systems
  • 335 Accesses

A two-dimensional billiard table is geometrically integrable when the phase space is foliated by continuous invariant curves. When an integrable planar domain has a C 4 boundary with strictly positive curvature, a neighborhood of the boundary is foliated by invariant circles. This family of invariant circles can lose convexity only after developing a singularity and if it developes a singularity, the boundary contains a segment of an ellipse. An important role in this result is played by the Birkhoff-Herman thoerem which shows that differentiability of enveloped curves cannot be lost without a change in homotopy type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Abdrakhmanov, Integrable Billiards, Vestnik Moskov Univ. Ser. I, Mat. Mekh. (1990), no. 6, 28–33.

    Google Scholar 

  2. E. Y. Amiran, Caustics and evolutes for convex planar domains, J. Diff. Geometry, 28 (1988), 345–357.

    MathSciNet  MATH  Google Scholar 

  3. S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil’s staircase, Physica 7D (1983), 249–258.

    MathSciNet  Google Scholar 

  4. M. Audin, Courbes algébriques et systèmes intégrables: géodésiques des quadriques. Exposition Math. 12 (1994), 193–226.

    MathSciNet  MATH  Google Scholar 

  5. V. Bangent, Mather sets for twist maps and geodesics on tori, Dynamics Reported 1 (1988), 1–45.

    Google Scholar 

  6. M. Bialy, Convex billiards and a theorem by E. Hopf, Math. Z. 7 (1994), 1169–1174.

    MathSciNet  MATH  Google Scholar 

  7. G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Mathematica 43 (1920), Reprinted in Collected Mathematical Papers, vol. II, p. 195–202, Amer. Math. Society, 1950.

    MathSciNet  Google Scholar 

  8. S. V. Bbolotin, Integrable Birkhoff Billiards, Vestnik Moskov Univ. Ser. I, Mat. Mekh. (1990), no. 2, 45–49.

    Google Scholar 

  9. A. Denjoy, Sur les courbes définies par les équations différentielles á le surface de tore, J. Math. Pure, et Appliq., 11 (1932), 333–375.

    MATH  Google Scholar 

  10. E. Gutkin and A. Katok, Caustics for inner and outer billiards, Commun. Math. Phys. 173(1995), 101–133.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. R. Herman, Sur les Courbes Invariant par les Difféomorphism.es de I’Anneau,. Astérisque 103-104 (1983).

    Google Scholar 

  12. V. F. Lazutkin, Existence of a continuum of closed invariant curves for a convex billiard, Math. USSR Izvestija 7 (1973), no. 1, 185–214.

    Article  MathSciNet  Google Scholar 

  13. J. N. Mather, Glancing billiards, Ergod. Th. Dyn. Sys., 2 (1982), 397–403.

    MathSciNet  MATH  Google Scholar 

  14. J. N. Mather, Existence of quasi-periodic orbits of twist homeomorphisms of the annulus, Topology, 21 (1982), 457–467.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. N. Mather, Modulus of continuity for Peierls’s barrier, in Periodic Solutions of Hamiltonian Systems and Related Topics, eds. P. H. Rabinowitz et al. NATO ASI Series C 209. D. Reidel, Dordrecht (1987), 177–202.

    Chapter  Google Scholar 

  16. J. Moser, Various aspects of integrable Hamiltonian systems, Progr. Math. 8 (1980), 223–289.

    Google Scholar 

  17. H. Poritsky, The billiard ball problem on a table with a convex boundary-an illustrative dynamical problem, Ann. of Math., 51 (1950), 446–470.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Ramani, A. Kalliterakis, B. Grammaticos, B. Dorizzi, Integrable curvilinear Billiards, Phys. Let. A 115 (1986), 25–28.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Y. Amiran, E. (2004). Fitting Invariant Curves on Billiard Tables and the Birkhoff-Herman Theorem. In: Delgado, J., Lacomba, E.A., Llibre, J., Pérez-Chavela, E. (eds) New Advances in Celestial Mechanics and Hamiltonian Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9058-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9058-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4778-1

  • Online ISBN: 978-1-4419-9058-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics