Skip to main content

Invariant Manifolds of Spatial Restricted Three-Body Problems: the Lunar Case

  • Conference paper

Abstract

New periodic orbits of three-dimensional restricted three-body problems are computed using a technique based on normal forms calculations. The system is formulated as a Hamiltonian perturbation of the two-body problem. Up to a certain order of approximation, the departure Hamiltonian is transformed into simpler ones, by extending the integrals of its principal part to the whole systems using different Lie transformations. Therefore, the resulting normal forms are reduced through invariant theory and the corresponding relative equilibria are determined. Finally, the transformations are inverted to recover the associated higher-dimensional invariant sets of the initial Hamiltonian.

Partial Support has been given by Spanish Ministry of Education and Science (DGCY Project # ESP99-1074-C02-01)

Partial Support has been given by Spanish Ministry of Education and Science (DGCY Project # PB98-1576)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.F. Arenstorf, New periodic solutions of the plane three-body problem corresponding to elliptic motion in the lunar theory, J. Differential Equations 4 (1968), 202–256.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.M Arms, R.H. Cushman and M.J. Gotay, A universal reduction procedure for Hamiltonian group actions, in The Geometry of Hamiltonian Systems, Ed. T. Ratiu, M. R. S. I. Workshop Proceedings, New York: Springer-Verlag (1991), 33–51.

    Chapter  Google Scholar 

  3. E.A. Belbruno, A new family of periodic orbits for the restricted problem, Celestial Mech. 25(1981), 195–217.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Brouwer, and G.M. Clemence, Methods of Celestial Mechanics, New York and London: Academic Press (1961).

    Google Scholar 

  5. C. Conley, On some new long periodic solutions of the plane restricted three body problem, Comm. Pure Appl. Math. 16 (1963), 449–467.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.H. Cushman, Reduction, Brouwer’s Hamiltonian, and the critical inclination, Celestial Mech. 31 (1983), 401–429.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.H. Cushman and DA. Sadovskif, Monodromy in the hydrogen atom in crossed fields, Physica D 142 (2000), 166–196.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Deprit, Canonical transformations depending on a small parameter, Celestial Mech. 1(1969), 12–30.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Deprit, The elimination of the parallax in satellite theory, Celestial Mech. 24 (1981)., 111–153.

    Article  MathSciNet  MATH  Google Scholar 

  10. Deprit, Delaunay normalisations, Celestial Mech. 26 (1982), 9–21.

    Article  MathSciNet  Google Scholar 

  11. P. Guillaume, New periodic solutions of the three dimensional restricted problem, Celestial Mech. 10 (1974), 475–495.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.C. Howison and K.R. Meyer, Doubly-symmetric periodic solutions of the spatial restricted three-body problem, i. Differential Equations 163 (2000), 174–197.

    Article  MathSciNet  MATH  Google Scholar 

  13. W.H. Jefferys, A new class of periodic solutions of the three-dimensional restricted problem, Astronom. J. 71 (1966), 99–102.

    Article  MathSciNet  Google Scholar 

  14. M. Kummer, On the three-dimensional lunar problem and other perturbation problems of the Kepler problem, J. Math. Anal. Appl. 93 (1983), 142–194.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kummer, A group theoretical approach to a certain class of perturbations of the Kepler problem, Arch. Rational Mech. Anal. 91 (1985), 55–82.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetries, Rep. Math. Phys. 5 (1974), 121–130.

    Article  MathSciNet  MATH  Google Scholar 

  17. K.R. Meyer, Symmetries and integrals in mechanics, in: Dynamical Systems, Ed. M. M. Peixoto, New York: Academic Press 1973., 259–272.

    Google Scholar 

  18. K.R. Meyer and G.R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York: Applied Mathematical Sciences 90 (1992), Springer-Verlag.

    MATH  Google Scholar 

  19. K.R Meyer, Private communication, 2001.

    Google Scholar 

  20. J. Moser, Regularization of Kepler’s problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609–636.

    Article  MathSciNet  MATH  Google Scholar 

  21. Palacian, Normal forms for perturbed Keplerian systems, J. Differential Equations 180 (2002), 471–519.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Palacián, Closed-form normalisations of perturbed two-body problems. Chaos Solitons Fractals 13 (2002), 853–874.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Palacian and P. Yanguas, Reduction of polynomial Hamiltonians by the construction of formal integrals, Nonlinearity 13 2000, 1021–1054.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Palacian and P. Yanguas, New periodic orbits of restricted three-body problems through invariant theory, in preparation.

    Google Scholar 

  25. E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge: Cambridge University Press, 1927.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Palacián, J., Yanguas, P. (2004). Invariant Manifolds of Spatial Restricted Three-Body Problems: the Lunar Case. In: Delgado, J., Lacomba, E.A., Llibre, J., Pérez-Chavela, E. (eds) New Advances in Celestial Mechanics and Hamiltonian Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9058-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9058-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4778-1

  • Online ISBN: 978-1-4419-9058-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics