Skip to main content

Neural Networks Involved in Cyclical Interlimb Coordination as Revealed by Medical Imaging Techniques

  • Chapter
Neuro-Behavioral Determinants of Interlimb Coordination

Abstract

During the past years, several studies have addressed the neural basis of interlimb coordination by means of imaging techniques, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The general picture emerging from these studies is that a network consisting of the cerebellum, SMA and dorsal premotor cortex becomes particularly activated during demanding interlimb coordination tasks. Additionally, other regions such as Broca’s area, ventral premotor cortex as well as secondary sensory areas appear to become involved when rhythmic interlimb tasks require increased monitoring of the individual limb motions performed in accordance to an imposed rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122 (Pt 5): 855–870

    Article  PubMed  Google Scholar 

  • Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ (2000) Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101: 803–806

    Article  PubMed  CAS  Google Scholar 

  • Belin P, McAdams S, Thivard L, Smith B, Savel S, Zilbovicius M, Samson S, Samson Y (2002) The neuroanatomical substrate of sound duration discrimination. Neuropsychologia 40: 1956–1964

    Article  PubMed  Google Scholar 

  • Binkofski F, Amunts K, Stephan KM, Posse S, Schormann T, Freund HJ, Zilles K, Seitz RJ (2000) Broca’s region subserves imagery of motion: a combined cytoarchitectonic and tMRI study. Hum. Brain Mapp. 11:273–285

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund H (l999a) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci. 11: 3276–3286

    Google Scholar 

  • Binkofski F, Buccino G, Stephan KM, Rizzolatti G, Seitz RJ, Freund HJ (1999b) A parieto-premotor network for object manipulation: evidence from neuroimaging. Exp Brain Res 128: 210–213

    Article  PubMed  CAS  Google Scholar 

  • Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. NeuroReport 12: 1879–1884

    Article  PubMed  CAS  Google Scholar 

  • Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson OB, Law I (1996) Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. J Cereb.Blood Flow Metab 16: 794–803

    Article  PubMed  CAS  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb. Cortex 11: 1110–1123

    Article  PubMed  CAS  Google Scholar 

  • Cardoso De Oliveira S (2002) The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychol (Arnst) 110: 139–159

    Article  Google Scholar 

  • Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121 ( Pt 2): 253–264

    Article  PubMed  Google Scholar 

  • Chan JL, Ross ED (1988) Left-handed mirror writing following right anterior cerebral artery infarction: evidence for non-mirror transformation of motor programs by right supplementary motor area. Neurology 38: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu.Rev.Neurosci. 22: 319–349

    Article  PubMed  CAS  Google Scholar 

  • Crammond OJ, Kalaska JF (2000) Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J Neurophysiol. 84: 986–1005

    PubMed  CAS  Google Scholar 

  • de Jong BM, Leenders KL, Paans AM (2002) Right parieto-premotor activation related to limb-independent antiphase movement. Cereb.Cortex 12: 1213–1217

    Article  PubMed  Google Scholar 

  • Debaere F, Swinnen SP, Beatse E, Sunaert S, van Heeke P, Duysens J (2001) Brain areas involved in interlimb coordination: a distributed network. NeuroImage 14: 947–958

    Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, van Heeke P, Swinnen SP (2003) Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia submitted

    Google Scholar 

  • Deiber MP, Ibanez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol. 75: 233–247

    PubMed  CAS  Google Scholar 

  • Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PO, Frackowiak RS (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84: 393–402

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci. 21: 2919–2928

    PubMed  CAS  Google Scholar 

  • Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig O, Holmes A, Ridding MC, Brooks OJ, Frackowiak RS (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol. 74: 802–815

    PubMed  CAS  Google Scholar 

  • Dick JP, Benecke R, Rothwell JC, Day BL, Marsden CD (1986) Simple and complex movements in a patient with infarction of the right supplementary motor area. Mov Disord. 1: 255–266

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41: 252–262

    Article  PubMed  Google Scholar 

  • Dreher JC, Grafman J (2002) The role of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci. 16: 1609–1619

    Article  PubMed  Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci. 11: 667–689

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000b) Cortical activity in precision-versus power-grip tasks: an tMRI study. J Neurophysiol. 83: 528–536

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Fagergren E, Forssberg H (2001) Differential fronto-parietal activation depending on force used in a precision grip task: an tMRI study. J Neurophysiol. 85: 2613–2623

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Kuhtz-Buschbeck JP, Forssberg H (2002) Brain regions controlling non synergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study. J Neurosci. 22: 5074–5080

    PubMed  CAS  Google Scholar 

  • Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE (2000a) Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur. J Neurosci. 12: 3385–3398

    Article  PubMed  CAS  Google Scholar 

  • Fink GR, Frackowiak RS, Pietrzyk D, Passingham RE (1997) Multiple non-primary motor areas in the humancortex. J Neurophysiol. 77: 2164–2174

    PubMed  CAS  Google Scholar 

  • Fontaine D, Capelle L, Duffau H (2002) Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery 50: 297–303

    PubMed  Google Scholar 

  • Foxe N, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex:an fMRl study. J Neurophysiol. 88: 540–543

    PubMed  Google Scholar 

  • Goerres GW, Samuel M, Jenkins IH, Brooks OJ (1998) Cerebral control of unimanual and bimanualmovements: an H2(15)0 PET study. NeuroReport 9: 3631–3638

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL, Rao SM, Haaland KY, Bobholz JA, Mayer AR, Binder JR, Cox RW (2000) Specialized neural systems underlying representations of sequential movements. J Cogn Neurosci 12: 56–77

    Article  PubMed  CAS  Google Scholar 

  • He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci. 15: 3284–3306

    PubMed  CAS  Google Scholar 

  • Heeger OJ, Huk AC, Geisler WS, Albrecht DG (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronalactivity? Nat.Neurosci. 3: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Heiser M, Iacoboni M, Maeda F, Marcus J, Mazzini (2003) The essential role of Broca’s area in imitation. Eur J Neurosci. 17: 1123–1128

    Article  PubMed  Google Scholar 

  • Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci. 22: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62: 1–30

    Google Scholar 

  • Hund-Georgiadis M, von Cramon DY (1999) Motor-learning-related change sin piano players and non-musicians revealed by functional magnetic-resonance signals. Exp Brain Res 125: 417–425

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286: 2526–2528

    Article  PubMed  CAS  Google Scholar 

  • Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. NeuroImage 14: 674–684

    Google Scholar 

  • Ivry RB (1996) The representation of temporal information in perception and motor control. Curr.Opin.Neurobiol. 6: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Keele S (1989) Timing functions of the cerebellum. J Cogn Neurosci I: 136–152

    Article  Google Scholar 

  • Jaencke L, Peters M, Himmelbach M, Nosselt T, Shah J, Steinmetz H (2000a) fMRl study of bimanual coordination. Neuropsychologia 38: 164–174

    Article  Google Scholar 

  • Jaencke L, Shah NJ, Peters M (2000b) Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res Cogn Brain Res 10: 177–183

    Article  Google Scholar 

  • Jasmin L, Courville J (1987) Distribution of external cuneate nucleus afferents to the cerebellum: n. Topographical distribution and zonal pattern—an experimental study with radioactive tracers in the cat. J Comp Neurol 261: 497–514

    Article  PubMed  CAS  Google Scholar 

  • Jenkins H, Passingham RE, Brooks OJ (1997) The effect of movement frequency on cerebral activation: a positron emission tomography study. J Neurol Sci 151: 195–205

    Article  PubMed  CAS  Google Scholar 

  • Karni A (1995) When practice makes perfect. Lancet 345: 395

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Okuda J, Umetsu A, Sugiura M, Inoue K, Suzuki K, Tabuchi M, Tsukiura T, Narayan SI, Nagasaka T, Yanagawa I, Fujii T, Takahashi S, Fukuda H, Yamadori A (2000) Human cerebellum plays an important role in memory-timed finger movements: an tMRI study. J Neurophysiol. 83: 1079–1087

    PubMed  CAS  Google Scholar 

  • Kawashima R, Matsumura M, Sadato N, Naito E, Waki A, Nakamura S, Matsunami K, Fukuda H, Yonekura Y (1998b) Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements—a PET study. Eur J Neurosci. 10: 2254–2260

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Tanji J, Okada K, Sugiura M, Sato K, Kinomura S, Inoue K, Ogawa A, Fukuda H (1998a) Oculomotor sequence learning: a positron emission tomography study. Exp Brain Res 122: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Kollias SS, Alkadhi H, Jaermann T, Crelier G, Hepp-Reymond MC (2001) Identification of multiple non primary motor cortical areas with simple movements. Brain Res Brain Res Rev. 36: 185–195

    Article  PubMed  CAS  Google Scholar 

  • Krings T, Topper R, Foltys H, Erberich S, Sparing R, Willmes K, Thron A (2000) Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci.Lett. 278: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an tMRI study. Eur J Neurosci. 14: 382–390

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Obrig H, Lindinger G, Cheyne D, Deecke L (1990) Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79: 504–514

    Article  PubMed  CAS  Google Scholar 

  • Leicht R, Schmidt RF (1977) Somatotopic studies on the vermal cortex of the cerebellar anterior lobe of unanaesthetized cats. Exp Brain Res 27: 479–490

    PubMed  CAS  Google Scholar 

  • Liu J, Morel A, Wannier T, Rouiller EM (2002) Origins of callosal projections to the supplementary motor area (SMA): a direct comparison between pre-SMA and SMAproper in macaque monkeys. J Comp Neurol 443: 71–85

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the tMRI signal. Nature 412: 150–157

    Article  PubMed  CAS  Google Scholar 

  • Lutz K, Specht K, Shah NJ, Jaencke L (2000) Tapping movements according to regular and irregular visual timing signals investigated with tMRI. NeuroReport II: 1301–1306

    Article  Google Scholar 

  • Mattay YS, Weinberger DR (1999) Organization of the human motor system as studied by functional magnetic resonance imaging. Eur J Radiol. 30: 105–114

    Article  PubMed  CAS  Google Scholar 

  • McNabb AW, Carroll WM, Mastaglia FL (1988) “Alien hand” and loss of bimanual coordination after dominant anterior cerebral artery territory infarction. J Neurol Neurosurg.Psychiatry 51: 218–222

    Article  PubMed  CAS  Google Scholar 

  • Meesen R, Levin O, Wenderoth N, Swinnen SP (2003) Head movements destabilize cyclical in-phase but not anti-phase homologous limb coordination in humans. Neurosci.Lett. 340: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differening stability in the human brain. Proc Natl Acad Sci U.S.A 99: 10948–10953

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1997) Cerebellar output channels. Int.Rev.Neurobiol. 41: 61–82

    Article  PubMed  CAS  Google Scholar 

  • Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical micro stimulation mapping. J Neurosci. 7: 1010–1021

    PubMed  CAS  Google Scholar 

  • Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JA (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Brain Res Cogn Brain Res 15: 250–260

    Article  PubMed  Google Scholar 

  • Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci U.S.A 97: 913–918

    Article  PubMed  CAS  Google Scholar 

  • Obhi SS, Haggard P, Taylor J, Pascual-Leone A (2002) rTMS to the supplementary motor area disrupts bimanual coordination. Motor Control 6: 319–332

    PubMed  Google Scholar 

  • Parsons LM (2001) Exploring the functional neuroanatomy of music performance, perception, and comprehension. Ann N Y Acad Sci 930: 211–231

    Article  PubMed  CAS  Google Scholar 

  • Penhune VB, Zatorre RJ, Evans AC (1998) Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci 10: 752–765

    Article  PubMed  CAS  Google Scholar 

  • Picard N, Strick P (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb.Cortex 6: 342–353

    Article  PubMed  CAS  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr.Opin.Neurobiol. 11: 663–672

    Article  PubMed  CAS  Google Scholar 

  • Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, Lechevalier B, Eustache F (1997) The structural components of music perception. A functional anatomical study. Brain 120 (Pt 2): 229–243

    Article  PubMed  Google Scholar 

  • Praamstra P, Kleine BU, Schnitzler A (1999) Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. NeuroReport 10: 3671–3674

    Article  PubMed  CAS  Google Scholar 

  • Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat. 197 Pt 3: 335–359

    Google Scholar 

  • Ramnani N, Passingham RE (2001) Changes in the human brain during rhythm learning. J Cogn Neurosci 13: 952–966

    Article  PubMed  CAS  Google Scholar 

  • Ramnani N, Toni I, Passingham RE, Haggard P (2001) The cerebellum and parietal cortex playa specific role in coordination: a PET study. NeuroImage 14: 899–911

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD, (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43: 2311–2318

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Harrington DL, Haarland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci. 17: 5528–5535

    PubMed  CAS  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat.Neurosci. 4: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat.Neurosci. 3: 716–723

    Article  PubMed  CAS  Google Scholar 

  • Richter W, Andersen PM, Georgopoulos AP, Kim SG (1997) Sequential activity in human motor areas during a delayed cued finger movement task studied by time-resolved fMRl. NeuroReport 8: 1257–1261

    Article  PubMed  CAS  Google Scholar 

  • Rijntjes M, Buechel C, Kiebel S, Weiller C (1999) Multiple somatotopic representations in the human cerebellum. NeuroReport 10: 3653–3658

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr.Opin.Neurobiol. 12: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr.Clin.Neurophysiol. 106: 283–296

    Article  PubMed  CAS  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, Wiesendanger M (1994) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102: 227–243

    Article  PubMed  CAS  Google Scholar 

  • Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M (1996b) Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci. 16: 2691–2700

    PubMed  CAS  Google Scholar 

  • Sadato N, Ibanez V, Deiber MP, Campbell G, Leonardo M, Hallett M (l996a) Frequency dependent changes of regional cerebral blood flow during finger movements. J Cereb.Blood Flow Metab 16: 23–33

    Google Scholar 

  • Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci. 17: 9667–9674

    PubMed  CAS  Google Scholar 

  • Sakai K, Hikosaka O, Takino R, Miyauchi S, Nielsen M, Tamada T (2000) What and when: parallel and convergent processing in motor control. J Neurosci. 20: 2691–2700

    PubMed  CAS  Google Scholar 

  • Samson Y, Belin P, Thivard L, Bodybuilder N, Crozier S, Zilbovicius M (2001) Auditory perception and language: functional imaging of speech sensitive auditory cortex. Rev.Neurol (Paris) 157: 837–846

    CAS  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI Atlas of the human cerebellum. Academic Press, San Diego, California, USA

    Google Scholar 

  • Schubotz RI, von Cramon DY (2001) Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Brain Res Cogn Brain Res II: 97–112

    Article  Google Scholar 

  • Sergent J (1993) Music, the brain and Ravel. Trends Neurosci. 16: 168–172

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ, Brown P (2002) The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Exp Brain Res 147: 268–272

    Article  PubMed  Google Scholar 

  • Serrien DJ, Strens LH, Oliviero A, Brown P (2002) Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neurosci.Lett. 328: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ, Wiesendanger M (2000) Temporal control of a bimanual task in patients with cerebellar dysfunction ion. Neuropsychologia 38: 558–565

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M,. (1993) Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116 (Pt 6): 1387–1398

    Article  PubMed  Google Scholar 

  • Snyder LH, Batista AP, Andersen RA (2000) Intention-related activity in the posterior parietal cortex: a review. Vision Res 40: 1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, Schnitzler A, Tass P, Posse S, Herzog H, Sturm V, Zilles K, Seitz RJ, Freund HJ (l999b) The role of ventral medial wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain 122 (Pt 2): 351–368

    Google Scholar 

  • Stephan KM, Binkofski F, Posse S, Seitz RJ, Freund HJ (1999a) Cerebral midline structures in bimanual coordination. Exp Brain Res 128: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Steyvers M, Etoh S, Sauner D, Levin O, Siebner HR, Swinnen SP, Rothwell JC (2003) High frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Exp Brain Res in press

    Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat.Rev.Neurosci. 3: 348–359

    Article  PubMed  CAS  Google Scholar 

  • Thoenissen D, Zilles K, Toni I (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. J Neurosci. 22: 9024–9034

    PubMed  CAS  Google Scholar 

  • Toyokura M, Muro I, Komiya T, Obara M (1999) Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging. Brain Res Bull. 48: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Toyokura M, Muro J, Komiya T, Obara M (2001) Activation of pre-supplementary motor area (SMA) and SMA proper during unimanual and bimanual complex sequences: An analysis using functional magnetic resonance imaging. J Neuroimaging 12: 172–178

    Article  Google Scholar 

  • Tracy JI, Faro SS, Mohammed FB, Pinus AB, Madi SM, Laskas JW (2001) Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology 57: 1862–1869

    Article  PubMed  CAS  Google Scholar 

  • Ullen F, Forssberg H, Ehrsson HH (2003) Neural networks for the coordination of the hands in time. J Neurophysiol. 89: 1126–1135

    Article  PubMed  Google Scholar 

  • van Mier H, Petersen SE (2002) Role of the cerebellum in motor cognition. Ann N Y Acad Sci 978: 334–353

    Article  PubMed  Google Scholar 

  • Van Oostende S, van Heeke P, Sunaert S, Nuttin B, Marchal G (1997) FMRl studies of the supplementary motor area and the premotor cortex. Neurolmage 6: 181–190

    Article  Google Scholar 

  • Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126: 873–888

    Article  PubMed  CAS  Google Scholar 

  • Weinrich M, Wise SP, Mauritz KH (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107: 385–414

    Article  PubMed  Google Scholar 

  • Wiesendanger M, Rouiller EM, Kazennikov O, Perrig S (1996) Is the supplementary motor area a bilaterally organized system? Adv.Neurol. 70: 85–93

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wenderoth, N., Debaere, F., Swinnen, S.P. (2004). Neural Networks Involved in Cyclical Interlimb Coordination as Revealed by Medical Imaging Techniques. In: Swinnen, S.P., Duysens, J. (eds) Neuro-Behavioral Determinants of Interlimb Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9056-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9056-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4777-4

  • Online ISBN: 978-1-4419-9056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics