Skip to main content

Spinal Networks Involved in Interlimb Co-ordination and Reflex Regulation of Locomotion

  • Chapter
Neuro-Behavioral Determinants of Interlimb Coordination
  • 176 Accesses

Abstract

There is increasing evidence that neuronal networks within the spinal cord are involved in human gait, similar to those known from the cat. Does it indicate that the control of human gait is still based on that of quadrupedal locomotion? Tackling this question is of basic and practical relevance. With the evolution of upright stance and gait, a greater influence of the direct corticomotoneuronal system paralleled advanced hand function which might have replaced the phylogenetically older control of arm movements. Nevertheless, there is some recent evidence that besides the direct connections, corticospinal excitation of upper limb motoneurons can also be mediated indirectly via propriospinal neurons in the cervical cord, for example during locomotion. Such alternative pathways allow a task-dependent neuronal linkage of cervical and thoraco-Iumbar propriospinal circuits controlling leg and arm movements during human locomotor activities. Consequently, interlimb co-ordination and reflex regulation during human locomotion appear to be organised along similar lines to that in the cat. The persistence of such a mode of movement control has consequences for rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alstennark B, Isa T, Ohki Y, Saito Y (1999) Disynaptic pyramidal excitation in forelimb motoneurones mediated via C(3)-C(4) propriospinal neurones in the Macaca fuscata. J Neurophysiol 82: 3580-3585

    Google Scholar 

  • Baldissera F, Cavallari P, Leocami L (1998) Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion-extension movements of the ipsilateral foot. Exp Brain Res 118, 427-430

    Article  PubMed  CAS  Google Scholar 

  • Bartos M, Manor Y, Nadim F, Marder E, Nusbaum MP (1999) Coordination of fast and slow rhythmic neuronal circuits. J Neurosci 19: 6650-6660

    PubMed  CAS  Google Scholar 

  • Bastiaanse CM, Duysens J, Dietz V (2000) Modulation of cutaneous reflexes by load receptor input during human walking. Exp. Brain Res 135: 189-198

    Article  PubMed  CAS  Google Scholar 

  • Bonnet M, Gurfinkel S, Lipchits MJ, Popov KE (1976) Central programming of lower limb muscularactivity in the standing man. Agressologie 17: 35-42

    PubMed  Google Scholar 

  • Brooke J D, Cheng J, Collins DF, Mcilroy WE, Misiaze KJE, Staines WR (1997) Sensorisensory afferents conditioning with leg movement: Gain control in spinal reflex and ascending paths. Prog Neurobiol 51: 393-421

    Article  PubMed  CAS  Google Scholar 

  • Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurones in man. Exp Brain Res 89, 649-654

    Article  PubMed  CAS  Google Scholar 

  • Brown TG (1914) On the nature of fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol (Lond) 48: 18-46

    CAS  Google Scholar 

  • Calancie B, Lutton S, Broton JG (1996) Central nervous system plasticity after spinal cord injury in man: Interlimb reflexes and the influence of cutaneous stimulation. Electroenceph Clin Neurophysiol 101: 304-315

    Article  PubMed  CAS  Google Scholar 

  • Calancie B, Molano MR, Broton JG (2002) Interlimb reflexesand synaptic plasticitybecome evident monthsafter humanspinal cord injury. Brain 125: 1150-1161

    Article  PubMed  Google Scholar 

  • Cazalets JR, Bertrand S (2000) Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. Eur J Neurosci 12: 2993-3002

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Stein RB, Jovanovic K, Yoshida K, Benett DJ, Han Y (1998) Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J Neurosci 18: 4295-4304

    PubMed  CAS  Google Scholar 

  • Debaere P, Swinnen SP, Beatse E, Sunaert S, Van Heeke P, Duysens J (2001) Brain areas involved in interlimbco-ordination: A distributednetwork. Neuroimage 14: 947-958

    Article  PubMed  CAS  Google Scholar 

  • De Leon RD, Hodgson JA, Roy RR, Edgerton VR (1999) Retention of hindlimb stepping ability in adult spinal cats after the cessationof step training. J

    Google Scholar 

  • Delwaide PJ, Crenna P (1984) Cutaneous nerve stimulationand motoneuronal excitability. II: Evidencefor non-segmental influences. J Neurol Neurosurg Psychiat 47: 190-196

    Article  CAS  Google Scholar 

  • de Noordhout AM Rapisarda G, Bagacz D, Gerard P, De Pasquo V, Pennisi G, Delwaide PJ (1999) Corticomotoneuronal synaptic connections in normal man: an electrophysiological study. Brain 122: 1327-1340

    Article  PubMed  Google Scholar 

  • Dietz V (1992) Human neuronal control of automatic functional movements: interaction betweencentral programsand afferent input. Physiol Rev 72: 33-69

    PubMed  CAS  Google Scholar 

  • Dietz V (1997) Neurophysiology of gait disorders: present and future applications. (Review) Electroenceph Clin Neurophysiol 103: 333-355

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2001) Spinal cord lesion: effects of and perspectivesfor treatment. (Review) Neural Plasticity 8: 83-90

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (2002 a) Do human bipeds use quadrupedal coordination? Trends Neurosci 25: 462-467

    Article  PubMed  Google Scholar 

  • Dietz V (2002 b) Proprioception and locomotordisorders. Nat Rev Neurosci 3: 781-790

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Colombo G, Jensen L, Baumgartner L (1995) Locomotorcapacity of spinal cord in paraplegicpatients. Ann Neurol 37: 574-582

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Fouad K, Bastiaanse C (2001) Neuronal co-ordination of arm and leg movements during locomotion. Eur J Neurosci, 14: 1906-1914

    Article  CAS  Google Scholar 

  • Dietz V, Horstmann GA, Berger W (1989) Interlimb coordination of leg muscle activation during perturbation of stance in humans. J Neurophysiol 62: 680-693

    PubMed  CAS  Google Scholar 

  • Dietz V, MUlier R, Colombo G (2002) Locomotor activity in spinal man: Significance of afferent input from joint and load receptors. Brain 125: 2626-2634

    Article  PubMed  Google Scholar 

  • Dietz V, Nakazawa K, Wirz M, Emi T (1999) Level of spinal cord lesion determines locomotor activity in spinal man. Exp Brain Res 128: 405-409

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Quintern J, Boos G, Berger W (1986) Obstruction of the swing phase during gait: phase-dependent bilateral leg muscle coordination. Brain Res 384: 166-169

    Article  PubMed  CAS  Google Scholar 

  • Dietz V, Zijlstra W, Duysens J (1994) Human neuronal interlimb coordination during splitbelt locomotion. Exp Brain Res 101: 513-520

    Article  PubMed  CAS  Google Scholar 

  • Drew T, Rossignol S (1987) A kinematic and electromyographic study of cutaneous reflexes evoked from the forelimb of unrestrained walking cats. J Neurophysiol 57: 1160-1184

    PubMed  CAS  Google Scholar 

  • Duysens J, Tax AA, Trippel M, Dietz V (1993) Increased amplitude of cutaneous reflexes during human running as compared to standing. Brain Res 613: 230-238

    Article  PubMed  CAS  Google Scholar 

  • Duysens J, Van de Crommert HWAA (1998) Neural control of locomotion. Part 1: The central pattern generator from cats to humans. (Review) Gait and Posture 7: 131-141

    Google Scholar 

  • Elftman H (1939) The function of the arms during walking. Hum Biol 11: 529-535

    Google Scholar 

  • Erni T, Dietz V (2001) Obstacle avoidance during human walking: learning rate and crossmodal transfer. J Physiol (Lond) 534: 303-312

    Article  CAS  Google Scholar 

  • Gans C, Gaunt AS, Webb PW (1997) Vertebrate locomotion. In: W.H. Dantzler (ed.) Handbook of Physiology, Section 13: Comparative Physiology, Oxford Univ Press, New York, pp 55-213

    Google Scholar 

  • Georgopoulos AP, Grillner S (1989) Visuomotor co-ordination in reaching an locomotion. Science 24: 1209-1210

    Article  Google Scholar 

  • Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ (1994) Corrective responses to loss of ground support during walking. I. Intact cats. 1. PSG, Stuart DG, Forssberg H, Herman, RM eds. Wenner-Gren International Symposium Series. Vol. 45, Neurobiology of Vertebrate Locomotion, Macmillan, London, pp 505-512

    Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB. (eds). Handbook of Physiology. The Nervous System. Motor Control. Vol. II. Am Physiol Soc, Washington pp 1179-1236

    Google Scholar 

  • Grillner S (1986) Interaction between sensory signals and the central networks controlling locomotion in lamprey, dog, fish and cat. In: (Grillner S, Stein)

    Google Scholar 

  • Grillner S, Deliagina T, Ekeberg O, EI Manira A, Hill RH, Lanser A, Orlovsky GN, Wallen P (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18: 270-279

    PubMed  CAS  Google Scholar 

  • Heffner R, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12: 161-200

    Article  PubMed  CAS  Google Scholar 

  • Herder JG (1785) Ideen zur Philosophie der Geschichte der Menschheit. Bd I

    Google Scholar 

  • Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996) Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J Neurophysiol. 75: 1126-1137

    PubMed  CAS  Google Scholar 

  • Jankowska E, Lundberg A (1981) Interneurones in the spinal cord. Trends Neurosci 4: 230-233

    Article  Google Scholar 

  • Jones R. (2000) Keeping in step. Nature Rev Neurosci 3: 84-85.

    Article  Google Scholar 

  • Ito M (1984) The Cerebellum and Neural Control. Raven, New York

    Google Scholar 

  • Komiyama T, Zehr EP, Stein RB (2000) Absence of nerve specificity in human cutaneous reflexes during standing. Exp Brain Res 133: 267-27238

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN (1999) Neural control of dexterity: What has been achieved? (Review) Exp Brain Res 128: 6-12

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1980) Half-centres revisited. In: Szentagothai J, Palkovits M, Hamori J (eds) Advanced Physiological Science. Regulatory function of the CNS. Motion and Organization Principles. Vol. 1, Pergamon, New York, pp 155-167

    Google Scholar 

  • Lundberg A (1999) Descending control of forelimb movements in the cat. Brain Res Bull 50: 323-324

    Article  PubMed  CAS  Google Scholar 

  • Maier MA, IIlert M, Kirkwood PA, Nielsen J, Leon RN (1998) Does a C3-C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. J Physiol (Lond) 511: 191-212

    Article  CAS  Google Scholar 

  • Marchand-Pauvert V, Mazevet O, Pierrot-Deseilligny E. Pol S, Prodat-Diehl P (1999) Handedness-related asymmetry in transmission in a system of human cervical premotoneurones. Exp Brain Res 125: 323-334

    Article  PubMed  CAS  Google Scholar 

  • Marder E (2000) Motor pattern generation. Curr Opin Neurobiol 10, 691-698

    Article  PubMed  CAS  Google Scholar 

  • Merkler O, Metz GA, Raineteau O, Dietz V, Schwab ME, Fouad K (2001) Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelinassociated neurite growth inhibitor Nogo-A. J Neurosci 21: 3665-3673

    PubMed  CAS  Google Scholar 

  • Metz GA, Curt A, van de Meent H, Klusman, Schwab ME, Dietz V (2000) Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17, 1-17

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Maier MA, Kirkwwod PA, Lemon RN (2000) Striking differences in transmission of corticospinal excitation to upper limb motoneurones in two primate species. J Neurophysiol 84: 698-709

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith M, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119: 1809-1833

    Article  PubMed  Google Scholar 

  • Nicolas G, Marchand-Pauvert V, Burke O, Pierrot-Deseilligny E (2001) Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans. J Physiol (Lond) 533: 903-919

    Article  CAS  Google Scholar 

  • Nielsen J, Petersen, N, Deuschl G, Ballegaard M (1993) Task-related changes in the effect of magnetic brain stimulation of spinal neurones in man. J Physiol (Lond) 471: 223-243

    CAS  Google Scholar 

  • Olivier E, Baker SN, Nakajima K, Brochier T, Lemon RN (2001) Investigation into nonmonosynaptic corticospinal excitation of Macaque upper limb single motor units. J Neurophysiol 86: 1573-1586

    PubMed  CAS  Google Scholar 

  • Pang MY, Yang JF (2000) The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J Physiol (Lond.) 528, 389-404

    Article  CAS  Google Scholar 

  • Pang MY, Yang JF (2001) Interlimb co-ordination in human infant stepping. J Physiol (Lond) 533: 617-625

    Article  CAS  Google Scholar 

  • Pauvert V, Pierrot-Deseilligny E, Rothwell JC (1998) Role of spinal premotoneurones in mediating corticospinal input to forearm motoneurones in man. J Physiol (Lond) 508: 301-312

    Article  CAS  Google Scholar 

  • Pierrot-Deseilligny E (1996) Transmission of the cortical command for human voluntary movement through cervical propriospinal premotoneurones. Prog. Neurobiol. 48: 489-517

    Article  PubMed  CAS  Google Scholar 

  • Prokop T, Berger W, Zijlstra W, Dietz V (1995) Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input. Exp Brain Res 106: 449

    Article  PubMed  CAS  Google Scholar 

  • Raineteau O, Schwab ME (2001) Plasticity of motor systems after incomplete spinal cord injury. Nature Rev Neurosci 2: 263-273

    Article  CAS  Google Scholar 

  • Schomburg ED, Petersen N, Barajon I, Hultborn H (1998) Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp Brain Res 122: 339-350

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115: 234-246

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Young DE, Walter CB, Serrien OJ (1991). Control of asymmetric bimanual movements. Exp Brain Res 85: 163-173.

    Article  PubMed  CAS  Google Scholar 

  • Tax AA, Van Wezel BMH (1995) Bipedal reflex coordination to tactile stimulation of the sural nerve during human running. J Neurophysiol 73: 1947-1964

    PubMed  CAS  Google Scholar 

  • Thelen E, Ulrich DB, Niles D (1987) Bilateral coordination in human infants: stepping on a split-belt treadmill. J Exp Psychol Hum Percept Perform 13: 405-410

    Article  PubMed  CAS  Google Scholar 

  • Ting LH, Kautz SA, Brown DA, Zajac FE (2000) Controlateral movement and extensor force generation alter flexion phase muscel co-ordination in pedalling. J Neurophysiol 83: 3351-3365.

    PubMed  CAS  Google Scholar 

  • Van Wezel BM, Ottenhoff FA, Duysens J (1997) Dynamic control of location-specific information in tactile cutaneous reflexes from the foot during human walking. J Neurosci 17: 3804-3814

    PubMed  Google Scholar 

  • Vilensky JA (1987) Locomotor behavior and control in human and non-human primates: comparison with cats and dogs. Neurosci Biobehav Rev 11: 263-274

    Article  PubMed  CAS  Google Scholar 

  • Wannier T, Bastiaanse C, Colombo G, Dietz V (2001) Arm to leg coordination in humans during walking, creeping and swimming activities. Exp Brain Res 141: 375-379

    Article  PubMed  CAS  Google Scholar 

  • Yang JF, Stephens MJ, Vishram R (1998) Transient disturbances to one limb produce coordinated, bilateral responses during infant stepping. J Neurophysiol. 79: 2329-2337

    PubMed  CAS  Google Scholar 

  • Zehr EP, Chua R (2000) Modulation of human cutaneous reflexes during rhythmic cyclical arm movement. Exp Brain Res 135: 241-250

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Collins OF, Chua R (2001a) Human interlimb reflexes evoked by electrical stimulation of cutaneous nerves innervating the hand and foot. Exp Brain Res 140: 495-504

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Kido A (2001) Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase-modulation of cutaneous reflexes. J Physiol (Lond) 537: 1033-1045

    Article  CAS  Google Scholar 

  • Zehr EP, Komiyama T, Stein RB (1997) Cutaneous reflexes during human gait: electromyographic and kinematic responses to electrical stimulation. J. Neurophysiol 77: 3311-3325

    PubMed  CAS  Google Scholar 

  • Zehr EP, Komiyama T, Stein RB (2001b) Differential regulation of cutaneous and H-reflexes during leg cycling in humans. J Neurophysiol 85: 1178-1184

    PubMed  CAS  Google Scholar 

  • Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog Neurobiol 58: 185-205

    Article  PubMed  CAS  Google Scholar 

  • Zehr EP, Stein RB, Komiyama T (1998) Function of sural nerve reflexes during human walking. J Physiol (Lond) 507: 305-314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dietz, V. (2004). Spinal Networks Involved in Interlimb Co-ordination and Reflex Regulation of Locomotion. In: Swinnen, S.P., Duysens, J. (eds) Neuro-Behavioral Determinants of Interlimb Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9056-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9056-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4777-4

  • Online ISBN: 978-1-4419-9056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics