Skip to main content

Dynamical Models of Rhythmic Interlimb Coordination

Relating pattern (in)stability to neural processes and effector properties

  • Chapter
Neuro-Behavioral Determinants of Interlimb Coordination

Abstract

The dynamical system approach to movement coordination has highlighted the importance of stability and loss of stability of coordination patterns. The empirically observed stability characteristics of rhythmic interlimb coordination have been modeled in terms of gradient dynamics of the (order) parameter that defines the coordination modes. However, the high level of abstraction of these models precludes gaining insight into how the stability features result from underlying processes and system properties. Modeling the limb movements and their interactions as a system of coupled oscillators holds greater promise in this respect. Because the development of such models is mathematically underconstrained, the identified coordination dynamics may be used to determine stability-related aspects of relevant system properties and interaction processes, which may, in tum, constrain the dynamical modeling of rhythmic interlimb coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amazeen EL, Amazeen PG, Treffner PJ, Turvey MT (1997) Attention and handedness in bimanual coordination dynamics. J Exp Psych: Hum Percept Perf 23:1552–1560

    Article  Google Scholar 

  • Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122:855–870.

    Article  PubMed  Google Scholar 

  • Baldissera F, Cavallari P, Marini G, Tassone G (1991) Differential control of in-phase and anti-phase coupling of rhythmic movements of ipsilateral hand and foot. Exp Brain Res 83:375–380

    Article  PubMed  CAS  Google Scholar 

  • Baldissera F, Borroni P, Cavallari P (2000) Neural compensation for mechanical differences between hand and foot during coupled oscillations of the two segments. Exp Brain Res 133:165–177

    Article  PubMed  CAS  Google Scholar 

  • Beek PJ, Peper CE, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: Beyond the Haken-Kelso-Bunz model. Brain Cogn 48:149–165

    Article  PubMed  CAS  Google Scholar 

  • Beek PJ, Rikkert WEI, Van Wieringen PCW (1996) Limit cycle properties of rhythmic forearm movements. J Exp Psych: Hum Percept Perf 22:1077–1092

    Article  Google Scholar 

  • Bingham GP, Zaal FTJM, Shull JA, Col1ins DR (2001) The effectof frequency on the visual perception of relative phaseand phase variability of two oscillating objects. Exp Brain Res 136:543–552

    Google Scholar 

  • Buchanan JI, Kelso JAS (1993) Posturally induced transitions in rhythmic multijoint limb movements. Exp Brain Res 94:131–142

    Article  PubMed  CAS  Google Scholar 

  • Byblow WD, Chua R, Goodman D (1995) Asymmetries in coupling dynamics of perception and action. J Mot Behav 27:123–137

    Article  PubMed  Google Scholar 

  • Byblow WD, Carson RG, Goodman D (1994) Expressions of asymmetries and anchoring in bimanual coordination. Hum Mov Sci 13:3–28

    Article  Google Scholar 

  • Carson RG (1996) Neuromuscular-skeletal constraints upon the dynamics of perception-action coupling. Exp Brain Res 110: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Chua R, Byblow WD, Smethurst CJ, Poon P (1999) Changes in posturealter the attentional demands of voluntary movement. Proc R Soc Biol Sci 266:853–857

    Article  CAS  Google Scholar 

  • Carson RG, Goodman D, Kelso JAS, Elliott D (1995) Phase transitions and critical fluctuations in rhythmic coordination of ipsilateral handand foot. J Mot Behav 27:211–224

    Article  PubMed  Google Scholar 

  • Carson RG, Riek S (1998) The influence of joint position on the dynamics of perception-action coupling. Exp Brain Res 121:103–114

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Riek S, Smethurst CJ, Franscisco Lisón Párraga J, Byblow WD (2000) Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Exp Brain Res 131:196–214

    Article  PubMed  CAS  Google Scholar 

  • Cattaert D, Semjen A, Summers JJ (1999) Simulating a neural cross-talk model for between hand interference during bimanual circle drawing. Biol Cybern 81:343–358

    Article  PubMed  CAS  Google Scholar 

  • Daffertshofer A (1998) Effects of noise on the phase dynamics of nonlinear oscillators. Phys Rev E 58:327–337

    Article  CAS  Google Scholar 

  • Daffertshofer A, Peper CE, Beek PJ (2000) Spectral analyses of event-related encephalographic signals. Phys Lett A 266:290–302

    Article  CAS  Google Scholar 

  • Daffertshofer A, Peper CE, Frank TD, Beek PJ (2000) Spatio-temporal patterns of encephalographic signals during polyrhythmic tapping. Hum Mov Sci 19:475–498

    Article  Google Scholar 

  • De Jong BM, Willemsen AT, Paans AM (1999) Brain activation related to the change between bimanual motor programs. Neuroimage 9:290–297

    Article  PubMed  Google Scholar 

  • Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J (2001) Brain areas involved in interlimb coordination: A distributed network. Neuroimage 14: 947–958

    Article  PubMed  CAS  Google Scholar 

  • Eliassen JC, Baynes K, Gazzaniga MS (1999) Direction information coordinated via the posterior third of the corpus callosum during bimanual movements. Exp Brain Res 128:573–577

    Article  PubMed  CAS  Google Scholar 

  • Frank TD, Daffertshofer A, Peper CE, Beek PJ, Haken H (2000) Towards a comprehensive theory of brain activity: Coupled oscillator systems under external forces. Physica D 144:62–86

    Article  Google Scholar 

  • Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310

    Article  Google Scholar 

  • Fuchs A, Jirsa VK, Kelso JAS (2000) Theory of the relation between human brain activity (MEG) and hand movements. Neuroimage 11:359–369

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Andres FG (2002) Bimanual coordination and interhemispheric interaction. Acta Psychol 110: 161–186

    Article  Google Scholar 

  • Grossberg S, Probe C, Cohen MA (1997) Neural control of interlimb oscillations: I. Human bimanual coordination. Biol Cybern 77:131–140

    Article  PubMed  CAS  Google Scholar 

  • Gunkel M (1962) De Ãœber relative Koordination bei willkürlichen menschlichen Gliedbewegungen (Relative coordination in voluntary limb movements in man). Pflügers Archiv 275:427–477

    Article  Google Scholar 

  • Haken H (1983) Synergetics: An Introduction. Springer, Berlin

    Google Scholar 

  • Haken H (1996) Principles of Brain Functioning. Springer, Berlin

    Book  Google Scholar 

  • Haken H (2002) Brain Dynamics. Springer, Berlin

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Peper CE, Beek PJ, Daffertshofer A (1996) A model for phase transitions in human hand movements during multifrequency tapping: Physica D 90:179–196; 92:260 (erratum).

    Article  Google Scholar 

  • Helmuth LL, Ivry RB (1996) When two hands are better than one: Reduced timing variability during bimanual movements. J Exp Psych: Hum Percept Perf 22:278–293

    Article  CAS  Google Scholar 

  • Heuer H (1996) Coordination. In Keele SW (ed) Handbook of Perception and Action (Vol. 2: Motor Skills). Academic Press, London, pp 121–180

    Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77:960–963

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: Bimanual coordination. Neural Comput 10:2019–2045

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans Med Imaging 21:493–504

    Article  PubMed  Google Scholar 

  • Karnopp D, Rosenberg R (1975) System dynamics: A unified approach. John Wiley, New York

    Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL, Schoner GS (1987) Space-time behavior of single and bimanual rhythmical movements: Data and limit cycle model. J Exp Psych: Hum Percept Perf 13:178–190

    Article  CAS  Google Scholar 

  • Kay BA, Saltzman EL, Kelso JAS (1991) Steady-state and perturbed rhythmical movements: A dynamical analysis. J Exp Psych: Hum Percept Perf 17:183–197

    Article  CAS  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246: R1000–1004

    PubMed  CAS  Google Scholar 

  • Kelso JAS, DelColle JD, Schoner G (1990) Action-perception as a pattern formation process. In Jeannerod M (ed) Attention and Performance XII. Lawrence Erlbaum, Hillsdale NJ, pp 139–169

    Google Scholar 

  • Kelso JAS, Jeka JJ (1992). Symmetry breaking dynamics of human multilimb coordination. J Exp Psych: Hum Percept Perf 18:645–668

    Article  CAS  Google Scholar 

  • Kelso JAS, Zanone PG (2002) Coordination dynamics of learning and transfer across different effector systems. J Exp Psych: Hum Percept Perf 28:776–797

    Article  CAS  Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Obrig H, Lindinger G, Cheyne D, Deecke L (1990) Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79: 504–514

    Article  PubMed  CAS  Google Scholar 

  • Mackey DC, Meichenbaum DP, Shemmell J, Riek S, Carson RG (2002) Neural compensation for compliant loads during rhythmic movement. Exp Brain Res 142:409–417

    Article  PubMed  CAS  Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Riley MA, Turvey MT (1997) Chaos in human rhythmic movement. J Mot Behav 29:195–198

    Article  PubMed  Google Scholar 

  • Monno A, Temprado JJ, Zanone PG, Laurent M (2002) The interplay of attention and bimanual coordination dynamics. Acta Psychol 110:187–211

    Article  Google Scholar 

  • Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: A functional MRI study. Brain Res Cogn Brain Res 15:250–260

    Article  PubMed  Google Scholar 

  • Newell KM, YT Liu, Mayer-Kress G (2001) Time scales in motor learning and development. Psychol Rev 108:75–82

    Article  Google Scholar 

  • Peper CE, Beek PJ (1998a) Are frequency-induced transitions in rhythmic coordination mediated by a drop in amplitude? Biol Cybern 79:291–300

    Article  PubMed  CAS  Google Scholar 

  • Peper CE, Beek PJ (1998b) Distinguishing between the effects of frequency and amplitude on interlimb coupling in tapping a 2:3 polyrhythm. Exp Brain Res 11:78–92

    Article  Google Scholar 

  • Peper CE, Beek PI (1999) Modeling rhythmic interlimb coordination: The roles of movement amplitude and time delays. Hum Mov Sci 18:263–280

    Article  Google Scholar 

  • Peper CE, Beek PJ, van Wieringen PCW (1991) Bifurcations in bimanual tapping: In search of Farey principles. In Requin J, Stelmach GE (eds) Tutorials in motor neuroscience Kluwer, Dordrecht, pp 413–431

    Chapter  Google Scholar 

  • Peper CE, Beek PJ, Van Wieringen PCW (1995) Frequency-induced transitions in bimanual tapping. Biol Cybern 73:301–309

    Article  PubMed  CAS  Google Scholar 

  • Peper CE, Nooy SAE, Van Soest AJ (2003) Mass perturbation ofa body segment: II. Effects on interlimb coordination. Manuscript submitted for publication

    Google Scholar 

  • Peters M (1994) Does handedness playa role in the coordination of bimanual movement? In Swinnen S, Heuer H, Massion J, Casear P (eds) Interlimb coordination: Neural, dynamical, and cognitive constraints. Academic Press, San Diego, pp 559–615

    Google Scholar 

  • Post AA, Peper CE, Beek PJ (2000a) Relative phase dynamics in perturbed interlimb coordination: The effects offrequency and amplitude. Biol Cybern 83:529–542

    Article  PubMed  CAS  Google Scholar 

  • Post AA, Peper CE, Daffertshofer A, Beek PJ (2000b) Relative phase dynamics in perturbed interlimb coordination: Stability and stochasticity. Biol Cybern 83:443–459

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum LD, Turvey MT (1988) Maintenance tendency in coordinated rhythmic movements: Relative fluctuations and phase. Neuroscience 27:289–300

    Article  PubMed  CAS  Google Scholar 

  • Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci, 17:9667–9674

    PubMed  CAS  Google Scholar 

  • Schmidt RC, Carello C, Turvey MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movement between people. J Exp Psych: Hum Percept Perf 16:227–247

    Article  CAS  Google Scholar 

  • Schmidt RC, Shaw BK, Turvey MT (1993) Coupling dynamics in interlimb coordination. J Exp Psych: Hum Percept Perf 19:397–415

    Article  CAS  Google Scholar 

  • Schmidt RC, Turvey MT (1995) Models of interlimb coordination-equilibria, local analysis, and spectral patterning: Comment on Fuchs and Kelso (1994). J Exp Psych: Hum Percept Perf 21:432–443

    Article  CAS  Google Scholar 

  • Scheuer G (1989) Learning and recall in a dynamical theory of coordination patterns. Biol Cybern 62:39–54

    Article  Google Scholar 

  • Schoner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257

    Article  PubMed  CAS  Google Scholar 

  • Schoner G, Kelso JAS (1988) A synergetic theory of environmentally-specified and learned patterns of movement coordination: I. Relative phase dynamics. Biol Cybern 58:71–80

    Article  PubMed  CAS  Google Scholar 

  • Schoner G, Zanone PG, Kelso JAS (1992) Learning as change of coordination dynamics: Theory and experiment. J Mot Behav 24:29–48

    Article  PubMed  CAS  Google Scholar 

  • Sternad D, Turvey MT, Schmidt RC (1992) Average phase difference theory and 1:1 entrainment in interlimb coordination. Biol Cybern 67:223–231

    Article  PubMed  CAS  Google Scholar 

  • Steyvers M, Verschueren SMP, Levin O, Ouamer M, Swinnen SP (2001) Proprioceptive control of cyclical bimanual forearm movements across different movement frequencies as revealed by means of tendon vibration. Exp Brain Res 140:326–334

    Article  PubMed  CAS  Google Scholar 

  • Stinear JW, Byblow WD (2001) Phase transitions and postural deviations during bimanual kinesthetic tracking. Exp Brain Res 137:467–477

    Article  PubMed  CAS  Google Scholar 

  • Stinear JW, Byblow WD (2002) Disinhibition in the human cortex is enhanced by synchronous upper limb movements. J Physiol 543:307–316

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: From behavioural principles to neural-network interactions. Nat Rev Neurosci 3:350–361

    Article  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Verschueren S, Serrien OJ, Daelman A (1995) Relative phase destabilization during interlimb coordination: The disruptive role of kinesthetic afferences induced by passive movement. Exp Brain Res 105:439–454

    PubMed  CAS  Google Scholar 

  • Temprado JJ, Zanone PG, Monno A, Laurent M (1999) Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psych: Hum Percept Perf 25:1579–1594

    Article  Google Scholar 

  • Treffner PJ, Turvey MT (1995). Handedness and the asymmetric dynamics of bimanual rhythmic coordination. J Exp Psych: Hum Percept Perf 21:318–333

    Article  Google Scholar 

  • Treffner PJ, Turvey MT (1996) Symmetry, broken symmetry, and handedness in bimanual coordination dynamics. Exp Brain Res 107:463–478

    Article  PubMed  CAS  Google Scholar 

  • Van Soest AJ, Peper CE, Selles RW (in press). Mass perturbation of a body segment: I. Effects on segment dynamics. J Mot Behav

    Google Scholar 

  • Verschueren SMP, Swinnen SP, Cordo PJ, Dounskaia NV (1999) Proprioceptive control of multijoint movement: Bimanual circle drawing. Exp Brain Res 127:182–192

    Article  PubMed  CAS  Google Scholar 

  • Tass PA, Fieseler T, Dammers J, Dolan K, Morosan P, Majtanik M, Boers F, Muren A, Zilles K, Fink GR (2003) Synchronization tomography: A method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography. Phys Rev Lett 90:088101

    Article  PubMed  CAS  Google Scholar 

  • Tuller B, Kelso JAS (1989) Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res 75:306–316

    Article  PubMed  CAS  Google Scholar 

  • Wimmers RH, Beek PJ, Van Wieringen PCW (1992) Phase transitions in rhythmic tracking movements: A case of unilateral coupling. Hum Mov Sci 11:217–226

    Article  Google Scholar 

  • Zanone PG, Kelso JAS (1992) The evolution of behavioral attractors with learning: Nonequilibrium phase transitions. J Exp Psych: Hum Percept Perf 18:403–421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peper, C.L.E., Daffertshofer, A., Beek, P.J. (2004). Dynamical Models of Rhythmic Interlimb Coordination. In: Swinnen, S.P., Duysens, J. (eds) Neuro-Behavioral Determinants of Interlimb Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9056-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9056-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4777-4

  • Online ISBN: 978-1-4419-9056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics