Skip to main content

A Cognitive Neuroscience Perspective on Bimanual Coordination and Interference

  • Chapter
Neuro-Behavioral Determinants of Interlimb Coordination

Abstract

We argue that bimanual coordination and interference depends critically on how these actions are represented on a cognitive level. We first review the literature on spatial interactions, focusing on the difference between movements directed at visual targets and movements cued symbolically. Interactions manifest during response planning are limited to the latter condition. These results suggest that interactions in the formation of the trajectories of the two hands are associated with processes involved in response selection, rather than interactions in the motor system. Neuropsychological studies involving callosotomy patients argue that these interactions arise from transcallosal interactions between cortically-based spatial codes. The second half of the chapter examines temporal constraints observed in bimanual movements. We propose that most bimanual movements are marked by a common event structure, an explicit representation that ensures temporal coordination of the movements. The translation of an abstract event structure into a movement with a particular timing pattern is associated with cerebellar function, although the resulting temporal coupling during bimanual movements may be due to the operation of other subcortical mechanisms. For rhythmic movements that do not entail an event structure, timing may be an emergent property. Under such conditions, both spatial and temporal coupling can be absent. The emphasis on abstract levels of constraint makes clear that limitations in bimanual coordination overlap to a considerable degree with those observed in other domains of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams RA, Landgraf JZ (1990) Differential use of distance and location information for spatial localization. Percept Psychophys 47:349–359

    Article  PubMed  CAS  Google Scholar 

  • Allan LG (1979) The perception of time. Percept Psychophys 26:340–354

    Article  Google Scholar 

  • Amazeen PG, Amazeen EL, Turvey MT (1998) Dynamics of human intersegmental coordination: Theory and research. In: Rosenbaum DA, Collyer CE (eds), Timing of behavior: neural, computational, and psychological perspectives. MIT Press, Cambridge MA. pp 237–259

    Google Scholar 

  • Baldissera F, Cavallari P, Civaschi P (1982) Preferential coupling between voluntary movements of ipsilateral limbs. Neurosci Letters 34:95–100

    Article  CAS  Google Scholar 

  • Baldissera F., Cavallari P, Marini G, & Tassone G (1991). Differential control of in-phase and anti-phase coupling of rhythmic movements of ipsilateral hand and foot. Exp Brain Res 83:375–380.

    Article  PubMed  CAS  Google Scholar 

  • Cardoso de Oliveira S. (2002) The neural basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psych 110:139–159

    Article  Google Scholar 

  • Carson RG, Thomas J, Summers JI, Walters MR, Semjen A. (1997) The dynamics of bimanual circle drawing. Quart J Exp Psych 50A:664–683

    Google Scholar 

  • Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nature Neurosci Rev 3:553–562

    Article  CAS  Google Scholar 

  • Collier GL, Wright CE (1995) Temporal rescaling of simple and complex ratios in rhythmic tapping. J Exp Psychol Hum Percept Perform 21:602–627

    Article  PubMed  CAS  Google Scholar 

  • Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130:159–168

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cog Sci 4:423–431

    Article  Google Scholar 

  • Diedrichsen J, Hazeltine E, Kennerley S, Ivry RB (2001) Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychol Sci 12: 493–498

    Article  PubMed  CAS  Google Scholar 

  • Diedrichsen J, Ivry RB, Hazeltine E, Kennerley S, Cohen A (2003) Bimanual interference associated with the selection of target locations. J Exp Psychol Hum Percept Perform 29: 64–77

    Article  PubMed  Google Scholar 

  • Duncan J (1977) Response selection errors in spatial choice reaction tasks. Quart J Exp Psychol 29: 415–423

    Article  Google Scholar 

  • Eliassen JC, Baynes K, Gazzaniga MS (1999) Direction information coordinated via the posterior third of the corpus callosum during bimanual movements. Exp Brain Res 128:573–577

    Article  PubMed  CAS  Google Scholar 

  • Essens PJ (1986) Hierarchical organization of temporal patterns. Percept Psychophys 40: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Flanders M, Tillery SIR, Soechting JF (1992) Early stages in a sensorimotor transformation. Beh Brain Sci 15:309–362.

    Article  Google Scholar 

  • Franz EA, Waldie KE, Smith MJ (2000) The effect of callosotomy on novel versus familiar bimanual actions: a neural dissociation between controlled and automatic processes? Psychol Sci 11:82–85

    Article  PubMed  CAS  Google Scholar 

  • Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310

    Article  Google Scholar 

  • Franz EA, Zelaznik HN, McCabe G (1991) Spatial topological constraints in a bimanual task. Acta Psychol 77: 137–151

    Article  CAS  Google Scholar 

  • Franz EA, Zelaznik HN, Swinnen S, Walter C (2001) Spatial conceptual influences on the coordination of bimanual actions: When a dual task becomes a single task. J Motor Behav 33:103–112

    Article  CAS  Google Scholar 

  • Glover S (in press) Separate visual representations in the planning and control of action. Beh Brain Sci

    Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision ofthe hand or perception of target displacement. Nature 320:748–750

    Article  PubMed  CAS  Google Scholar 

  • Guiard Y (1987) Asymmetric division of labour in human skilled bimanual action: the cinematic chain as a model. J Motor Beh 19: 86–517

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Bioi Cybern 51:347–356

    Article  CAS  Google Scholar 

  • Hazeltine E, Diedrichsen J, Kennerley SW, Ivry RB (2003) Bimanual cross-talk during reaching movements is primarily related to response selection not the specification of motor parameters. Psychol Res 67:56–70

    PubMed  Google Scholar 

  • Heilman KM, Rothi LJ, Valenstein E (1982) Two forms of ideomotor apraxia. Neurology 32:342–346

    Article  PubMed  CAS  Google Scholar 

  • Heuer H (1993) Structural constraints on bimanual movements. Psychol Res 55:83–98

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Kleinsorge T, Spijkers W, Steglich W (2001) Static and phasic cross-talk effects in discrete bimanual reversal movements. J Motor Beh 33:67–85

    Article  CAS  Google Scholar 

  • Heuer H, Spijkers W, Kleinsorge T, van der Loo H, Steglich C (1998) The time course of cross-talk during the simultaneous specification of bimanual movement amplitudes. Exp Brain Res 118:381–392

    Article  PubMed  CAS  Google Scholar 

  • Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The Theory of Event Coding (TEC): a framework for perception and action planning. Beh Brain Sci 24:849–878

    Article  CAS  Google Scholar 

  • Ivry RB, Franz EA, Kingstone A, Johnston J (1998) The PRP effect following callosotomy: Uncoupling of lateralized response codes. J Exp Psychol Hum Percept Perform 24:463–480

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Hazeltine E (1999) Subcortical locus of temporal coupling in the bimanual movements ofa callosotomy patient. Hum Mov Sci 18:345–375

    Article  Google Scholar 

  • Ivry RB & Richardson T (2002) Temporal control and coordination: The multiple timer model. Brain Cog 48:117–132

    Article  Google Scholar 

  • Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. In: Highstein SM, Thach WT (eds) The cerebellum: recent developments in cerebellar research Annals of the New York Academy of Sciences Vol 978 New York Academy of Sciences, NY. pp 302–317

    Google Scholar 

  • Jeka JJ & Kelso JAS (1995) Manipulating symmetry in the coordination dynamics of human movement J Exp Psychol Hum Percept Perform 21:360–374

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey SH (in press) Cortical mechanisms of human tool use. In Johnson-Frey SH (ed.) Taking action: cognitive neuroscience perspectives on the problem of intentional acts MIT Press, Cambridge MA

    Google Scholar 

  • Johnson-Frey SH, Funnell MG, Gazzaniga MS A dissociation between tool use skills and hand dominance: Insights from left-and right-handed callosotomy patients. Manuscript under review

    Google Scholar 

  • Johnson SA Rotte M, Grafton ST, Hinrichs H, Gazzaniga MS, Heinze HJ (2002) Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 17:1693–1704

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Cohen DA, Prudhomme M, Hyde ML (1990) Parietal area 5 neuronal activity encodesmovement kinematics not movement dynamics. Exp Brain Res 80:351–364

    Article  PubMed  CAS  Google Scholar 

  • Keele SW, Pokorny R, Corcos D, Ivry R (1985) Do perception and motor production share common timing mechanisms? Acta Psychologia 60:173–193

    Article  CAS  Google Scholar 

  • Kelso JAS, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perform 5:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physio Reg Integ Comp 15:R1000–R1004

    Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal and spatial uncouplingduring continuous bimanual movements. Nature Neuro 5:376–381

    Article  CAS  Google Scholar 

  • Klapp S, Hill MD, Tyler JG, Martin ZE, Jagacinski RJ, Jones MR (1985) On marching to two different drummers: perceptual aspects of the difficulties. J Exp Psychol Hum Percept Perform 11:814–827

    Article  PubMed  CAS  Google Scholar 

  • Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: Cognitive basis for stimulus-response compatibility: A modeland taxonomy. Psychol Rev 97:253–270

    Article  PubMed  CAS  Google Scholar 

  • Krampe RT, Kliegl R, Mayr U, Engbert R, Vorberg D (2000) The fast and the slow of skilled bimanual rhythm production: Parallel vs integrated timing. J Exp Psychol Hum Percept Perform 26:206–233

    Article  PubMed  CAS  Google Scholar 

  • Kugler PN, Turvey MT (1987) Information natural law and the self-assembly of rhythmic movement. Lawrence Erlbaum, Hillsdale NJ

    Google Scholar 

  • Leipmann HMO (1907) De Ein Fall von linksseitiger Agraphie unf Apraxie bei rechtsseitinger. Lähmung Monatszeitschrift für Psychiatrie und Neurologie 10:214–227

    Google Scholar 

  • Marteniuk RG, MacKenzie CL, Baba DM (1984) Bimanual movement control: Information processing and interaction effects. Quart J Exp Psychol 16A:335–365

    Google Scholar 

  • Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Nambisan R, Diedrichsen J, Ivry RB, Kennerley S (2002) Two autopilots one brain: limitations and interactions during online adjustment of bimanual reaching movements. Paper presented at the annual meeting of the Society for Neuroscience, Orlando FL

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pashler H (1994) Dual-task interference in simple tasks: data and theory. Psychol Bul 116:220–244

    Article  CAS  Google Scholar 

  • Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I Different aspects of the deficit in reaching for objects. Brain 111:643–674

    Article  PubMed  Google Scholar 

  • Perrig S, Kazennikov O, Wiesendanger M (1999) Time structure ofa goal-directed bimanual skill and its dependence on task constraints. Behav Brain Res 103:95–104

    Article  PubMed  CAS  Google Scholar 

  • Peters M (1994) Does handedness playa role in the coordination of bimanual movement? In: Swinnen SP, Heuer H, Massion J, Casaer P (eds) Interlimb coordination: Neural dynamical and cognitiveconstraints. Academic Press, London, pp 595–615

    Google Scholar 

  • Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rossetti Y (2000) An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nature Neuro 3:729–736

    Article  CAS  Google Scholar 

  • Povel D-J (1981) Internal representation of simple temporal patterns. J Exp Psychol Hum Percept Perform 7:3–18

    Article  PubMed  CAS  Google Scholar 

  • Prablanc C, Martin O (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. J Neurophysio 67:455–469

    CAS  Google Scholar 

  • Riek S, Carson RG, Byblow WD (1992) Spatial and muscle dependencies in bimanual coordination. J Hum Mov Stud 23:251–265

    Google Scholar 

  • Robertson SD, Zelaznik HN, Lantero DA, Bojczyk KG, Spencer RM, Doffin JG, Schneidt T (1999) Correlations for timing consistency among tapping and drawing tasks: Evidence against a single timing process for motor control. J Exp Psychol Hum Percept Perform 25:1316–1330

    Article  PubMed  CAS  Google Scholar 

  • Rushworth MF, Nixon PD, Passingham RE (1997) Parietal cortexand movement I Movement selection and reaching. Exp Brain Res 117:292–310

    Article  PubMed  CAS  Google Scholar 

  • Schluter ND, Krams M, Rushworth MF, Passingham RE (2001) Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia 39:105–113

    Article  PubMed  CAS  Google Scholar 

  • Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements A study using transcranial magnetic stimulation. Brain 121:785–799

    Article  PubMed  Google Scholar 

  • Schmidt RA, Heuer H, Ghodsian D, Young DE (1998) Generalized motor programs and units of action in bimanual coordination. In: Latash, ME (ed) Progress in motor control Vol 1: Bernstein straditions in movement studies. Human Kinetics, Champaign IL, pp 329–360

    Google Scholar 

  • Semjen A (2002) On the timing basis of bimanual coordination in discrete and continuous tasks. Brain Cog 48:133–148

    Article  Google Scholar 

  • Semjen A, Ivry RB (2001) The coupled oscillator model of between-hand coordination in alternate-hand tapping: A reappraisal. J Exp Psychol Hum Percept Perform 27:251–265

    Article  PubMed  CAS  Google Scholar 

  • Semjen A, Summers JI, Cattaert D (1995) Hand coordination in bimanual circle drawing. J Exp Psychol Hum Percept Perform 21:1139–1157

    Article  Google Scholar 

  • Serrien DJ, Wiesendanger M (2000) Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia 38:558–565

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ, Nirkko AC, Lovblad KO, Wiesendanger M (2001) Damage to the parietal lobe impairs bimanual coordination. Neuroreport 12:2721–2724

    Article  PubMed  CAS  Google Scholar 

  • Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439

    Article  PubMed  CAS  Google Scholar 

  • Spijkers W, Heuer H (1995) Structural constraints on the performance of symmetrical bimanual movements with different amplitudes. Quart J Exp Psychol: Human Experimental Psychology 48:716–740

    Article  Google Scholar 

  • Steglich C, Heuer H, Spijkers W, Kleinsorge T (1999) Bimanual coupling during the specification of isometric forces. Exp Brain Res 129:302–316

    Article  PubMed  CAS  Google Scholar 

  • Stucchi N, Viviani P (1993) Cerebral dominance and asynchrony between bimanual two-dimensional movements. J Exp Psychol Hum Percept Perform 19:1200–1220

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP, Dounskaia N, Duysens J (2002) Patterns of bimanual interference reveal movement encoding within a radial egocentric reference frame. J Cog Neuro 14:463–471

    Article  Google Scholar 

  • Swinnen SP, Dounskaia N, Walter CB, Serrien DJ (1997) Preferred and induced coordination modes during the acquisition of bimanual movements with a 2:1 ratio. J Exp Psychol Hum Percept Perform 23:1087–1110

    Article  Google Scholar 

  • Tuller B, Kelso JAS (1989) Environmentally-specified patterns of movement coordination in normal and split-brain subjects. Exp Brain Res 75:306–316

    Article  PubMed  CAS  Google Scholar 

  • Turvey MT (1990) Coordination. Am Psychol 45:938–953

    CAS  Google Scholar 

  • Vos PG, Mates J, Kruysbergen NW (1995) The perceptual centre of a stimulus as the cue for synchronization to a metronome: Evidence from asynchronies. Quart J Exp Psychol 48A:1024–1040

    Google Scholar 

  • Weigelt C, Cardoso De Oliveira S (2003) Visuomotor transformations affect bimanual coupling. Exp Brain Res 148:439–450

    PubMed  Google Scholar 

  • Whiting HTA (Ed) Human motor actions: Bernstein reassessed Amsterdam: North Holland (1984) Advances in Psychology Series Vol 17

    Google Scholar 

  • Wimmers RH, Beek PJ, Vanwieringen PCW (1992) Phase-transitions in rhythmic tracking movements: a case ofunilateral coupling. Hum Mov Sci 11: 217–226

    Article  Google Scholar 

  • Zelaznik HM, Spencer RM, Doffin J (2000) Temporal precision in tapping and circle drawing movements at preferred rates is not correlated: Further evidence against timing as a general purpose ability. J Motor Beh 32:193–199

    Article  CAS  Google Scholar 

  • Zelaznik HM, Spencer RM, Ivry RB (2002) Dissociation of explicit and implicit timing processes in repetitive tapping and drawing movements. J Exp Psychol Hum Percept Perform 28:575–588

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ivry, R., Diedrichsen, J., Spencer, R., Hazeltine, E., Semjen, A. (2004). A Cognitive Neuroscience Perspective on Bimanual Coordination and Interference. In: Swinnen, S.P., Duysens, J. (eds) Neuro-Behavioral Determinants of Interlimb Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9056-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9056-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4777-4

  • Online ISBN: 978-1-4419-9056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics