Skip to main content

Plastics and Composites from Polylactic Acid

  • Chapter

Abstract

Polylactic acid (PLA) is a thermoplastic polyester that has been commercialized for use in biodegradable plastic bags and planting cups. Recent research and development efforts show that it is also a superior composite matrix material. Flax reinforced PLA composites, which are readily extrusion and compression molded, were found to have 50% higher strength than other flax reinforced thermoplastic composites which are already being used in automotive panels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hornsby, P.R., Hinrichsen, E. and Tarverdi, K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers. Part II. Analysis of composite microstructure and mechanical properties. J. Mat. Sci. 1997; 32: 1009–1015.

    Article  CAS  Google Scholar 

  2. Heijenrath, R. and Peijs, T. Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Advanced Composites Letters 1996; 5(3): 81–85.

    Google Scholar 

  3. Oksman, K. Mechanical properties of natural fibre mat reinforced thermoplastics. Appl. Comp. Mat. 2000; 7: 403–414.

    Article  CAS  Google Scholar 

  4. Mieck, K.-P., Nechwatal, A. and Knobeldorf, C. Potential applications of natural fibres in composite materials. Melliand Textilberichte (English) 1994; 11: 228–230.

    Google Scholar 

  5. Bledzki, A.K., Reihmane, S. and Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polymer Sci. 1996; 5: 1329–1336.

    Article  Google Scholar 

  6. Li, Y., Mai, Y.-W. and Lin,Y. Sisal fibre and its composites: a review of recent developments. Composites Science and Technology 2000; 60: 2037–2055.

    Article  CAS  Google Scholar 

  7. Bürger, H., Koine, A., Maron, R. and Mieck, K.-P. Use of natural fibres and environmental aspects. International Polymer Science and Technology 1995; 22: 25–34.

    Google Scholar 

  8. Sanadi, A.R., Prasad, S.V. and Rohatgi, P.K. Natural fibres and agro-wastes as fillers and reinforcements in polymer composites. J. Sci. Ind. Res. 1985; 44: 437–442.

    Google Scholar 

  9. Oksman, K. High quality flax fibre composites manufactured by the resin transfer moulding process. J. Reinforced Plastics and Composites 2001; 20(7): 621–627.

    Article  CAS  Google Scholar 

  10. Plackett, D.V. and Andersen, T.L Biocomposites from natural fibres and biodegradable polymers; Processing, properties and futures prospects. Proceedings of the 23rd Rise International Symposium on Materials Science: Sustainable Natural and and Polymeric Composites-Science and Technology; 2002; Ris0 National Laboratory, Roskilde, Denmark.

    Google Scholar 

  11. Cyras, V.P., Innace, S., Kenny, J.M. and Vazques, A. Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibres. Polymer Composites 2001; 22(1): 104–110.

    Article  CAS  Google Scholar 

  12. Riedel, U. and Nickel, J. Natural fibre-reinforced biopolymers as construction materials-new discoveries. Angew. Macromol. Chemie 1999; 272: 34–40.

    Article  CAS  Google Scholar 

  13. Herrmann, A.S., Nickel, J. and Riedel, U. Construction materials based upon biologically renewable resources-from components to finished parts. Polymer Degradation and Stability 1998; 59: 251–261.

    Article  CAS  Google Scholar 

  14. Mishra, S., Tripathy, S.S., Misra, M., Mohanty, A.K. and Nayak, S.K. Novel ecofriendly biocomposites: biofiber reinforced biodegradable polyester amide compositesfabrication and properties evaluation. J. Reinforced Plastics and Composites 2002; 21(1): 5570.

    Google Scholar 

  15. Williams, G.I. and Wool, R.P. Composites from natural fibres and soy oil resin. Appl. Comp. Mat. 2000; 7: 421–432.

    Article  CAS  Google Scholar 

  16. Meinander. K., Niemi, M., Hakola, J.S. and Selin, J.-F. Polylactides-degradable polymers for fibres and films. Macromol. Symp. 1997; 123: 147–154.

    Article  CAS  Google Scholar 

  17. Holten, C.H., Muller, A. and Rehbinder, D. Lactic Acid. Copenhagen: Verlag Chemie, International Research Association, 1971, Chapter xVII.

    Google Scholar 

  18. Salminen, S. and Wright, A., eds. Lactic Acid Bacteria. New York: Marcel Dekker 1993, pp. 65–95.

    Google Scholar 

  19. Carothers. W.H., Dorough, G.L. and Van Natta, F.J. Studies of polymerization and ring formation. x. The reversible polymerizationof six-membered cyclic esters. J. Am. Chem. Soc. 1932; 54: 761–772.

    Article  CAS  Google Scholar 

  20. Jacobsen, S., Fritz, H.-G., Degée, P., Dubois, P. and Jérôme, R. New developments on the ring opening polymerisation of polylactide. Industrial Crops and Products 2000; 11: 265–275.

    Article  CAS  Google Scholar 

  21. Drumright, R.E., Gruber, P.R. and Henton, D.E. Polylactic acid technology. Adv. Mater. 2000; 12(23): 1841–1846.

    Article  CAS  Google Scholar 

  22. Ajioka, M., Enomoto, K., Suzuki, K. and Yamaguchi, A. The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. J. Environ. Polym. Degrad. 1995; 3: 225–234.

    Article  CAS  Google Scholar 

  23. Mukherejee, P.S. and Satyanarayana, K.G. Structure and properties of some vegetable fibres. Part 1. Sisal fibre. J. Mat. Sci. Tech. 1984; 19: 3925–3934.

    Google Scholar 

  24. Ilvessalo-Pläffi, M.-S. Fiber Atlas, Identification of Papermaking Fibers. Berlin, Heidelberg: Springer-Verlag, 1995.

    Google Scholar 

  25. Bledzki, A.K., Reihmane, S. and Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Poly.Sci. 1996; 5: 1329–1336.

    Article  Google Scholar 

  26. Södergard, A., Niemi, M., Selin, J.-F. and Näsman, J.H. Changes in peroxide meltmodified poly(L-lactide). I&EC Research 1995; 34:1203–1207.

    Google Scholar 

  27. Chartoff, R.P. “Thermoplastic polymers.” In: Thermal Characterization of Polymeric Materials, E.A. Turi ed. Academic Press, 2nd ed., 1997; vol. 1: chap. 3.

    Google Scholar 

  28. Mapleston, P. Automakers work on sustainable platforms (Biopolymers). Modern Plastics 2003; 80(3): 45.

    Google Scholar 

  29. Best, J.R. Biodegradable polymers could replace 0.2% of conventional global plastics production. Injection Molding, Extrusion and Blow Molding Newsletter 2003; 27(14, April 14): 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oksman, K., Selin, JF. (2004). Plastics and Composites from Polylactic Acid. In: Wallenberger, F.T., Weston, N.E. (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9050-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9050-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4774-3

  • Online ISBN: 978-1-4419-9050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics