Advertisement

Architecture of Nanocrystal Building Blocks

  • Jinwoo Cheon
  • Young-wook Jun
  • Sang-Min Lee
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Crystals consist of a periodic alternation of specific repeating molecules. The individual repeating molecules have quantized electronic structures while crystals have continuous electronic band structures that result from the overlap and combination of molecular orbitals of repeating molecules. Therefore, isolated molecules exhibit quantum mechanical properties, while the chemical and physical properties of bulk crystals obey the laws of classical mechanics. However, when the crystal size decreases into the nano-scale regime (1 ∼ 100 nm), the electronic band of the crystals starts to be quantized and the resulting nanocrystals behave as an intermediate between molecules and crystals.2, 3, 4, 5 These nanocrystals exhibit novel properties which differ from both molecular and bulk properties. For example, CdSe semiconductor crystals on the 10 nm scale, the characteristic red luminescence is no longer observed but the luminescence can be continuously tuned from red to blue by varying the crystal size. The melting temperature of nanocrystals simultaneously decreases when the nanocrystal size is reduced.6,7 In the nanoscopic world, crystal properties are highly dependent on the size, shape, and surface state of the crystals.

Keywords

American Chemical Society Shape Control CdSe Nanocrystals Nanocrystal Size Single Source Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.Present address: Department of Chemistry, Korea Advanced Institute of Science and Technology, Korea.Google Scholar
  2. 2.
    Chestnoy, N.; Hull R; Brus, L. E. J. Chem. Phys. 1986, 85, 2237.CrossRefGoogle Scholar
  3. 3.
    Steigerwald, M. L.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183. (Reprinted in part with permission. Copyright 1990 American Chemical Society.)CrossRefGoogle Scholar
  4. 4.
    Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425.CrossRefGoogle Scholar
  5. 5.
    Murray, C. B.; Noms, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. (Reprinted in part with permission. Copyright 1993 American Chemical Society.)CrossRefGoogle Scholar
  6. 6.
    Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Weller, H. J. Phys. Chem. 1994, 98, 7665.CrossRefGoogle Scholar
  7. 7.
    Lee, K-B.; Lee, S.-M.; Cheon, J. Adv. Mater. 2001, 13, 517.CrossRefGoogle Scholar
  8. 8.
    Kastner, M. A. Rev. Mod. Phys. 1992, 64, 489.CrossRefGoogle Scholar
  9. 9.
    Klein, David L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699.CrossRefGoogle Scholar
  10. 10.
    Hu, J.; Li, L.; Yang, W.; Manna, L.; Wang, L.; Alivisatos, A. P. Science 2001, 292, 2060. (Reprinted with permission. Copyright 2001 Science.)CrossRefGoogle Scholar
  11. 11.
    Park, J.-L; Kang, N.J.; Jim, Y.-w.; Oh, S. J.; Ri, H.-C; Cheon, J. ChemPhysChem. 2002, 543.Google Scholar
  12. 12.
    Bean, C.P.; Livingston, J. D. J. Appl. Phys. 1959, 30.Google Scholar
  13. 13.
    Cullity, B. D. Introduction to Magnetic Materials Addison Wesley, London, 1972.Google Scholar
  14. 14.
    Markovich, G.;Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R D.; Heath, J. R. Acc. Chem. Res. 1999, 32, 415.CrossRefGoogle Scholar
  15. 15.
    Postma, H. W. Ch.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C. Science 2001, 293, 76.CrossRefGoogle Scholar
  16. 16.
    Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Science 2001, 294, 1313.CrossRefGoogle Scholar
  17. 17.
    Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Science 2000, 289, 94.CrossRefGoogle Scholar
  18. 18.
    Hubbard, A. T. In Surfactant Science Series;Sugimoto, T., Eds.; Marcel Dekker Inc.: New York-Basel, 2000; Vol. 92.Google Scholar
  19. 19.
    Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A Science 1996, 272, 1924. (Reprinted with permission. Copyright 1996 Science.)CrossRefGoogle Scholar
  20. 20.
    Lee, S.-M.; Jun, Y.; Cho, S.-N.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 11244. (Reprinted in part with permission. Copyright 2002 American Chemical Society.)CrossRefGoogle Scholar
  21. 21.
    Trindade, T.; O’Brien, P.; Zhang, X.; Motevallic, M. J. Mater. Chem., 1997, 7, 1011.CrossRefGoogle Scholar
  22. 22.
    Li, L.; Walda, J.; Manna, L.; Alivisatos, A. P.; Nano. Lett. 2002, 2, 557.CrossRefGoogle Scholar
  23. 23.
    Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59. (Reprinted by permission from Nature copyright 2000 Macmillan Publishers Ltd.)CrossRefGoogle Scholar
  24. 24.
    Jun, Y.; Choi, C.-S.; Cheon, J. Chem. Commun. 2001, 101.Google Scholar
  25. 25.
    Jun, Y.; Lee, S.-M.; Kang, N.-J.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 5150. (Reprinted in part with permission. Copyright 2001 American Chemical Society.)CrossRefGoogle Scholar
  26. 26.
    Jun, Y.; Jung, Y.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 615. (Reprinted in part with permission. Copyright 2002 American Chemical Society.)CrossRefGoogle Scholar
  27. 27.
    Pacholski, C.; Kornowski, A.; Weiler, H. Angew. Chem. Int. Ed. 2002, 41, 1188.CrossRefGoogle Scholar
  28. 28.
    Tang, Z.; Kotov, N. A.; Giersig, M; Science 2002, 297, 237.CrossRefGoogle Scholar
  29. 29.
    Yeh, C.-Y.; Lu, Z. W.; Froyen, S.; Zunger, A. Phys. Rev. B. 1992, 46, 10086.CrossRefGoogle Scholar
  30. 30.
    Kim, Y.-H.; Jun, Y.; Jun, B.-H.; Lee, S.-M.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 13656. (Reprinted in part with permission. Copyright 2002 American Chemical Society.)CrossRefGoogle Scholar
  31. 31.
    Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science 1995; 270, 1791.CrossRefGoogle Scholar
  32. 32.
    Morales, A. M.; Lieber, C. M. Science 1998, 279, 208.CrossRefGoogle Scholar
  33. 33.
    Holmes, J. D.; Johnston, K. P.; Doty, R. C; Korgel, B. A. Science 2000, 287, 1471. (Reprinted with permission. Copyright 2000 Science.)CrossRefGoogle Scholar
  34. 34.
    Park, S.-J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K; Hyeon, T. J. Am. Chem. Soc. 2000, 122, 8581. (Reprinted in part with permission. Copyright 2000 American Chemical Society.)CrossRefGoogle Scholar
  35. 35.
    Cordente, N.; Respaud, M.; Senocq, F.; Casanove, M.-J.; Amiens, C.; Chaudret, B. Nano. Lett. 2001, 1, 565. (Reprinted in part with permission. Copyright 2001 American Chemical Society.)CrossRefGoogle Scholar
  36. 36.
    El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257. (Reprinted in part with permission. Copyright 2001 American Chemical Society.)CrossRefGoogle Scholar
  37. 37.
    Feldheim, D. L.; Foss, Jr. C. A. Metal Nanoparticles; Synthesis, Charaterization, and Applications; Marcel Dekker, Inc.: New York-Basel, 2002; pp 163–182.Google Scholar
  38. 38.
    Chemseddine, A.; Moritz, T. Eur. J. Inorg. Chem. 1999, 235.Google Scholar
  39. 39.
    Penn, R. L.; Banfield J. F. Geochimica. Et. Cosmochimica. Acta. 1999, 63, 1549.CrossRefGoogle Scholar
  40. 40.
    Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186.CrossRefGoogle Scholar
  41. 41.
    Puntes, V. F.; Zanchet, D.; Erdonmez, C. K; Alivisatos, A. P.; J. Am. Chem. Soc. 2002, 124, 12874. (Reprinted in part with permission. Copyright 2002 American Chemical Society.)CrossRefGoogle Scholar
  42. 42.
    Chen, S.; Fan, Z.; Carroll, D. L. J. Phys. Chem. B. 2002, 106, 10777. (Reprinted in part with permission. Copyright 2002 American Chemical Society.)CrossRefGoogle Scholar
  43. 43.
    Jin, R; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901. (Reprinted with permission. Copyright 2001 Science.)CrossRefGoogle Scholar
  44. 44.
    Bradley, J. S.; Tesche, B.; Busser, W.; Maase, M.; Reetz, M. T. J. Am. Chem. Soc. 2000, 122, 4631. (Reprinted in part with permission. Copyright 2000 American Chemical Society.)CrossRefGoogle Scholar
  45. 45.
    Pinna, N.; Weiss, K; Urban, J.; Pileni, M.-P. Adv. Mater. 2001, 122, 261.CrossRefGoogle Scholar
  46. 46.
    Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700. (Reprinted in part with permission. Copyright 2000 American Chemical Society.)CrossRefGoogle Scholar
  47. 47.
    Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335. (Reprinted with permission. Copyright 1995 Science.)CrossRefGoogle Scholar
  48. 48.
    Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393. (Reprinted by permission from Nature copyright 1999 Macmillan Publishers Ltd.)CrossRefGoogle Scholar
  49. 49.
    Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.CrossRefGoogle Scholar
  50. 50.
    Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 1389. (Reprinted in part with permission. Copyright 2001 American Chemical Society.)CrossRefGoogle Scholar
  51. 51.
    Sugimoto, T. Monodipersed Particles; Elsevier: Amsterdam, 2001.Google Scholar
  52. 52.
    Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2002, 124, 3343. (Reprinted in part with permission. Copyright 2002 American Chemical Society.)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Jinwoo Cheon
    • 1
  • Young-wook Jun
    • 1
  • Sang-Min Lee
    • 1
  1. 1.Department of ChemistryYonsei UniversiySeoulKorea

Personalised recommendations