Distinct Contractile Systems for Electromechanical and Pharmacomechanical Coupling in Smooth Muscle

  • Valéria Lamounier-Zepter
  • Leonidas G. Baltas
  • Ingo Morano
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 538)


The smooth muscle cells express diverse isoforms of the molecular motor Type II myosin. Three different genes coding for myosin heavy chains (MyHC) are expressed, namely one smooth-muscle specific (SM-MyHC), and two non-muscle- specific myosin heavy chain (NM-MyHC), NM-MyHCA, and NM-MyHCB, located on chromosomes 16, 22, and 17, respectively1. Different splice variants of the SM-MyHC are generated due to the alternatively spliced mutually exclusive exons 5b and 392, 3. Elimination of exon 5b in a knock-out mouse model demonstrated that a high contractile state depends on the presence of myosin with 5′-inserted heavy chains4.


Myosin Heavy Chain Electromechanical Coupling Myosin Light Chain Kinase Phasic Contraction Tonic Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Weiss and L. A. Leinwand, The mammalian myosin heavy chain gene family, Annu. Rev. Cell Dev. Biol. 12, 417–439 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Nagai, M. Kuro-o, P. Babij and M Periasamy, Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis, J. Biol. Chem. 264, 9734–9737, (1989)PubMedGoogle Scholar
  3. 3.
    P. Babij, C. Kelly and M. Periasamy, Characterization of a mammalian smooth muscle myosin heavy chain gene: complete nucleotide and protein coding sequence and analysis of the 5 end of the gene, Proc. Natl. Acad. Sci. USA 88, 10676–10680, (1991)PubMedCrossRefGoogle Scholar
  4. 4.
    G. J. Babu, E. Loukianov, T. Loukianova, G.J. Pyne, S. Huke, G. Osol, R.B. Low, R. J. Paul and M. Periasamy, Loss off SM-B myosin affects muscle shortening velocity and maximal force development, Nat. Cell Biol. 3,1025–1029, (2001)PubMedCrossRefGoogle Scholar
  5. 5.
    J. M Miano, P. Cserjesi, K.L. Ligon, M. Periasamy and E.N. Olson, Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis, Circ. Res. 75, 803–812, (1994)PubMedCrossRefGoogle Scholar
  6. 6.
    A. P. Somlyo and A. V. Somlyo, Signal transduction and regulation in smooth muscle, Nature 372, 231–236,(1994)PubMedCrossRefGoogle Scholar
  7. 7.
    A. R. Bresnick, Molecular mechanisms of nonmuscle myosin-II regulation, Curr. Opin. Cell Biol. 11, 26–33, (1999)PubMedCrossRefGoogle Scholar
  8. 8.
    J. T. Deng, J. E. Van Lierop, C. Sutherland and M. P. Walsh, Ca2+-independent smooth muscle contraction. A novel funktion fur integrin-linked kinase, J. Biol. Chem. 276(19), 16365–16373,(2001)PubMedCrossRefGoogle Scholar
  9. 9.
    I. Morano, G. X. Chai, L. G. Baltas, V. Lamounier-Zepter, G. Lutsch, M. Kott, H. Haase and M. Bader, Smooth-muscle myosin contraction without smooth-muscle myosin, Nat. Cell Biol. 2, 371–375, (2000)PubMedCrossRefGoogle Scholar
  10. 10.
    M Löfgren, E. Ekblad, I. Morano and A. Amer, Non-muscle myosin motor of smooth muscle J. Gen. Physiol, accepted for publication (2003)Google Scholar
  11. 11.
    M. Saitoh, T. Ishikawa, S. Matsushima, M. Naka and H. Hidaka, Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase, J. Biol. Chem. 262(16), 7796–7801, (1987)PubMedGoogle Scholar
  12. 12.
    K. S. Murthy, J. R. Grider, J. F. Kuemmerle and G. M. Makhlouf, Sustained muscle contraction induced by agonists, growth factors and Ca2+ mediated by distinct PKC isozymes, Am. J. Physiol. 279, G201–G210. (2000)Google Scholar
  13. 13.
    M. Yoshida, K. Nishi, J. Machida, H. Sakiyama, K. Ikeda and S. Ueda, Effects of phorbol ester on lower urinary tract smooth muscles in rabbits, Eur. J. Pharmacol, 222, 205–211, (1992)PubMedCrossRefGoogle Scholar
  14. 14.
    N. R. Danthuluri and R. C. Deth, Phorbol ester-induced contraction of arterial smooth muscle and inhibition of a-adrenergic response, Biochem. Biophys. Res. Commun. 125(3), 1103–1109,(1984)PubMedCrossRefGoogle Scholar
  15. 15.
    P. H. Howe and A. A. Abdel-Latif, Phorbol ester-induced protein phosphorylation and contraction in sphincter smooth muscle of rabbit iris, FEBS Lett. 215(2), 279–284, (1987)PubMedCrossRefGoogle Scholar
  16. 16.
    H. Rasmussen, J. Forder, I. Kojima and A. Scriabine, TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun. 122(2), 776–784, (1984)PubMedCrossRefGoogle Scholar
  17. 17.
    Y. H. Lee, I. Kim, R. Laporte, M. P. Walsh and K. G. Morgan, Isozyme-specific inhibitors of protein kinase C translocation: effects on contractility of single permeabilized vascular smooth muscle cells of the ferret, J. Physiol. 517(3), 709–720, (1999)PubMedCrossRefGoogle Scholar
  18. 18.
    M. Castagna, Y. Takai, K. Kaibuchi, K. Sano, U. Kikkawa and Y. Nishizuka, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257(13), 7847–7851, (1982)PubMedGoogle Scholar
  19. 19.
    M. Naka, M. Nishikawa, R. S. Adelstein and H. Hidaka, Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains, Nature 306, 490–492, (1983)PubMedCrossRefGoogle Scholar
  20. 20.
    M. Ikebe and S. Reardon, Phosphorylation of bovine platelet myosin by protein kinase C, Biochem. 29, 2713–2720, (1990)CrossRefGoogle Scholar
  21. 21.
    S. Kawamoto, A. R. Bengur, J. R. Sellers and R.S. Adelstein, In situ phosphorylation of human platelet myosin heavy and light chains by protein kinase C, J. Biol. Chem. 264(4), 2258–2265,(1989)PubMedGoogle Scholar
  22. 22.
    M. Nishikawa, J. R. Sellers, R. S. Adelstein and H. Hidaka, Protein kinase C modulates in vitro phosphorylation off the smooth muscle heavy meromyosin by myosin light chain kinase, J. Biol. Chem. 259(14), 8808–8814, (1984)PubMedGoogle Scholar
  23. 23.
    S. Umemoto, A. R. Bengur and J. R. Sellers, Effect of multiple phosphorylations of smooth muscle and cytoplasmic myosins on movement in an in vitro motility assay, J. Biol. Chem. 264(3), 1431–1436,(1989)PubMedGoogle Scholar
  24. 24.
    P. de Lanerolle and M. Nishikawa, Regulation of embryonic smooth muscle myosin by protein kinase C, J. Biol. Chem. 263(19) 9071–9074. (1988)PubMedGoogle Scholar
  25. 25.
    A. P. Somlyo and A. V. Somlyo, Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522(2), 177–185, (2000)PubMedCrossRefGoogle Scholar
  26. 26.
    S. Senba, M. Eto and M. Yazawa, Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle, J. Biochem. 125, 354–362, (1999)PubMedCrossRefGoogle Scholar
  27. 27.
    M. Eto, T. Ohmori, M. Suzuki, K. Furuya and F. Monta, A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization, J. Biochem. 118(6) 1104–1107,(1995)PubMedGoogle Scholar
  28. 28.
    L. Li, M. Eto, M. R. Lee, F. Monta, M. Yazawa and T. Kitazawa, Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle, J. Physiol. 508(3), 871–881, (1998)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Valéria Lamounier-Zepter
    • 1
  • Leonidas G. Baltas
    • 1
  • Ingo Morano
    • 1
    • 2
  1. 1.Max-Delbrück-Center for Molecular MedicineBerlinGermany
  2. 2.Johannes-Müller Institute of PhysiologyHumboldt-University (Charité)BerlinGermany

Personalised recommendations