Skip to main content

Actin Dynamics in Neuronal Growth Cone Revealed With a Polarized Light Microscopy

  • Conference paper
Molecular and Cellular Aspects of Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

  • 490 Accesses

Abstract

More than 100 years ago, S.R. y Cajal1 discovered an enlargement of cytoplasm at the tip of neunte through a careful observation of the fixed nervous tissues. He named this structure as growth cone. He suggested a possibility that the growth cones might guide growing dendrites and axons to their targets. Since then, this hypothesis has been supported by neuroscientists. It is established that the growth cone crawls around and finds suitable path for neuronal elongation2-4. Present research interests in this field are path finding by the growth cone and its motile mechanism5–8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereces

  1. Cajal, S.R.y A quelle époque apparaissent les expansions des cellules nerveuses de la moelle épinière du poulet? Anal Anz. 5 609–613 (1890).

    Google Scholar 

  2. Letoumeau, P.C., Kater, S.B., and Macagno, E.R. (eds.) The Nerve Growth Cone, (Raven Press, New York, 1991):..

    Google Scholar 

  3. McCaig, CD. Nerve Growth and Guidance, (Portland Press. London: 1996)

    Google Scholar 

  4. Heidemann, S.R. Cytoplasmic mechanism of axonal and dendritic growth in neuron. Int. Rev. Cytol, 65 235–296. (1996)

    Article  Google Scholar 

  5. Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC, Poo MM Adaptation in the chemotactic guidance of nerve growth cones. Nature 417 411–418 (2002)

    Article  PubMed  CAS  Google Scholar 

  6. Xiang Y, Li. Y, Zhang Z, Cui K, Wang S, Yuan XB, Wu CP, Poo MM, Duan SM Nerve growth cone guidance mediated by G protein-coupled receptors. Nature Neurosci 5 843–848 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. Gomez T.M., Spitzer N.C. Regulation of growth cone behavior by calcium: new dynamics to earlier perspectives J. Neurobiol 44 174–183 (2000)

    Article  PubMed  CAS  Google Scholar 

  8. Gomez T.M., Spitzer N.C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397 350–355 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. Bridgman, P.C. and Dailey M.E. The organization of myosin and actin in rapid frozen nerve growth cones. J. Cell Biol. 108 95–109. (1989)

    Article  PubMed  CAS  Google Scholar 

  10. Yamada K.M., Spooner, B.S. and Wessells, N.K. Axon growth: role of microfilaments and microtubules. Proc. NatulAcad. Sci. USA 66 1206–1212. (1970)

    Article  CAS  Google Scholar 

  11. Yamada K.M., Spooner, B.S. and Wessells, N.K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. CellBiol. 49 614–634. (1971)

    Article  CAS  Google Scholar 

  12. Tosney, K.W. and Wessells, N.K. Neuronal motility: the ultrastructure of veil and microspikes correlates with their motile activities. J. Cell Biol. 61 389–411. ( 1983)

    CAS  Google Scholar 

  13. Goldberg D.J. and Burmeister, D.W. Stages in axon formation: observation of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J. Cell Biol. 103 1921–1931.(1986)

    Article  PubMed  CAS  Google Scholar 

  14. Bray, D. and Chapman. K. Analysis of microspike movements on the neuronal growth cone. J. Neurosci. 5 3204–3213(1985).

    PubMed  CAS  Google Scholar 

  15. Oldenbourg R, Katoh K. Danuser G. Mechanism of lateral movement of filopodia and radial actin bundles across neuronal growth cones. Biophys. J. 78 1176–1182. (2000).

    Article  PubMed  CAS  Google Scholar 

  16. O’Connor TP, Duerr JS, Bentley D. Pioneer growth cone steering decisions mediated by single filopodial contacts in situ. J. Neurosci. 10 3935–3946 (1990)

    PubMed  Google Scholar 

  17. Davenport RW, Dou P, Render V, Kater SB, A sensory role for neuronal growth cone filopodia. Nature 361 721–724(1993)

    Article  PubMed  CAS  Google Scholar 

  18. Gomez TM, Robles L, Poo MM, et al. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291 1983–1987 (2001)

    Article  PubMed  CAS  Google Scholar 

  19. Okabe S. and Hirokawa N. Actin dynamics in growth cones. J. Neurosci. 11 1918–1929. (1991)

    PubMed  CAS  Google Scholar 

  20. Small VJ Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility. Semin. Cell Biol. 5 157–163 (1994)

    Article  PubMed  CAS  Google Scholar 

  21. Welch M.D., Mallavarapu, A., Rosenblatt, J., and Mitchison, T.J. Actin dynamics in vivo. Curr. Opin. Cell Biol. 9 54–61. (1997)

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y.L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101 597–602. (1985)

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe N. and Mitchison TJ Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295 1083–1086 (2002)

    Article  PubMed  CAS  Google Scholar 

  24. Theriot J.A. and Mitchison T.J. Actin filament dynamics in locomoting cells. Nature 352 126–131. (1991)

    Article  PubMed  CAS  Google Scholar 

  25. Smith SJ Neuronal cytomechanics: the actin-based motility of growth cone Science 242, 708–715. (1988)

    Article  PubMed  CAS  Google Scholar 

  26. Welnhofer, E.A. Zhao, L. and Cohan I. Actin dynamics and organization during growth cone morphogenesis in Helisoma neurons. Cell Motil. Cytoskeleton, 37 54–71. (1997)

    Article  PubMed  CAS  Google Scholar 

  27. Mallavarapu, A. and Mitchison, T.J. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. CellBiol. 146 1097–1106 (1999)

    Article  CAS  Google Scholar 

  28. Forscher P. and Smith, S.J Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell. Biol 107 1505–1516 (1988)

    Article  PubMed  CAS  Google Scholar 

  29. Lin C-H. and Forscher P., Cytoskeletal remodeling during growth cone-target interactions. J. Cell Biol. 121 1369–1383(1993).

    Article  PubMed  CAS  Google Scholar 

  30. Lin C-H. and Forscher P., Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14 763–771. (1995)

    Article  PubMed  CAS  Google Scholar 

  31. Lin C-H, Espreafico, E.M., Mooseker, M.S. and Forscher, P Myosin drives retrograde f-actin flow in neural growth cone. Neuron 16 769–782 (1996).

    Article  PubMed  CAS  Google Scholar 

  32. Oldenbourg R. A new view on polarization microscopy. Nature 381 811–812

    Google Scholar 

  33. Maeda Y, Birefringence of oriented thin filaments in the I-bands of crab striated muscle and comparison with the flow birefringence of reconstituted thin filaments. Eur. J. Biochem 90 113–121 (1978)

    Article  PubMed  CAS  Google Scholar 

  34. Soranno, T. and E. Bell. Cytostructural dynamics of spreading and translocating cells. J. Cell Biol. 95 127–136 (1982.).

    Article  PubMed  CAS  Google Scholar 

  35. Tran P. Salmon E.D., Oldenbourg R. Quantifying single and bundled microtubules with the polarized light microscope. Biol Bull 189 206. (1995)

    PubMed  CAS  Google Scholar 

  36. Kaczmarek, L.K., Finbow, M., Revel, J., and Strumwasser, F. The morphology and coupling of Aplysia bag cell within the abdominal ganglion and in cell culture. J. Neurobiol. 10, 535–550. (1979).

    Article  PubMed  CAS  Google Scholar 

  37. Knox, R. J., E. A. Quattrocki, J.A. Connor and L. K. Kaczmarek. Recruitment of Ca2+ channels by protein kinase C during rapid formation of putative neuropeptide release sites in isolated Aplysia neurons. Neuron 8 883–889.(1992)

    Article  PubMed  CAS  Google Scholar 

  38. Katoh, K., Hammar K., Smith P.J.S., and Oldenbourg, R. Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones. Mol Biol Cell 10 197–210. (1999)

    PubMed  CAS  Google Scholar 

  39. Rochlin, M.W., Dailey, M.E and Bridgman P.C. Intrapodia: novel actin-rich structures that advance through nerve growth cone lamellipodia. Mol Biol Cell 8 256a. (1997)

    Google Scholar 

  40. Rochlin, M.W., Dailey, M.E and Bridgman P.C. Polymerizing microtubules activate site-directed f-actin assembly in nerve growth cones Mol Biol Cell 10 2309–2327. (1999)

    PubMed  CAS  Google Scholar 

  41. Dabiri G.A., Sänger J.M., Portnoy D.A. and Southwick F.S. Listeria monocytogenes moves rapidly through the host cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87 6068–6072. (1990).

    Article  PubMed  CAS  Google Scholar 

  42. Forscher P., Lin, C-H., and Thompson, C. Novel form of growth cone motility involving site directed actin filament assembly. Nature 357 515–518. (1992)

    Article  PubMed  CAS  Google Scholar 

  43. Ma L, Cantley LC, Janmey PA, Kirschner MW: Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J Cell Biol 1401125–1136. (1998).

    Article  PubMed  CAS  Google Scholar 

  44. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97 221–231 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. Katoh, K., Hammar K., Smith P.J.S., and Oldenbourg, R. Arrangement of radial actin bundles in the growth cone of Aplysia bag cell neurons shows the immediate past history of filopodial behavior. Proc. Natl Acad. Sci. USA 96 7928–7931. (1999)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Katoh, K., Yoshida, F., Ishikawa, R. (2003). Actin Dynamics in Neuronal Growth Cone Revealed With a Polarized Light Microscopy. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics