Skip to main content

A Study of Lamellipodial Membrane Dynamics by Optical Trapping Technique: Implication of Motor Activity in Movements

  • Conference paper
Molecular and Cellular Aspects of Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

  • 484 Accesses

Abstract

Cell locomotion is an important activity in many cellular phenomena such as wound healing, morphogenesis and development (Stossel, 1993). The cell locomotion can be divided into three distinct, but consecutive steps: protrusion of the cell front, adhesion of that portion to substrate and contraction of the tail portion of the cell. The membrane protrusion is indispensable in the locomotion, and the mechanism that drives this movement has been a subject of a number of studies (for reviews, see Condeelis, 1993; Mitchson and Cramer, 1996; Lauffenburger and Horwitz, 1996; Borisy and Svitkina, 2000). Since lamellipodium is bordered by an elastic cell membrane and is highly anisotropic in shape, it should be supported by some intracellular architecture to maintain its morphology. Electron microscopic studies have established that in lamellipodium crisscrossing meshwork of actin filaments resides immediately beneath the cell membrane with their plus end (the end where polymerization occurs in vivo) oriented toward the membrane (Small et al., 1978; Small, 1988). Hence, actin filament plays a major role in supporting lamellipodial shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., Heaysman, J.E.M., and Pegrum, S.M., 1970, The locomotion of fibroblasts in culture, Exp. Cell Res. 59:393–398.

    Article  PubMed  CAS  Google Scholar 

  • Bear, J.E., Svitkina, T.M., Krause, M., Schafer, D.A., Luoreiro, J.J., Strasser, G.A., Maly, I.V., Chaga, O.Y., Cooper, J.A., Borisy, G.G., and Gertler, F.B., 2002, Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility, Cell 109:509–521.

    Article  PubMed  CAS  Google Scholar 

  • Borisy, G.G., and Svitkina, T.M., 2000, Actin machinery pushing the envelope, Curr. Opin. CellBiol. 12:104–112.

    Article  CAS  Google Scholar 

  • Choquet, D., Felsenfeld, DP., and Sheetz, MP., 1997, Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages, Cell 88:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J., 1993, Life at the leading edge: the formation of cell protrusions, Annu. Rev. Cell Biol. 9:411–444

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J., Hall, A., Bresnick, A., Warren, V, Hock, R., Bennet, H, and Ogihara, S., 1988, Actin polymerization and pseudopod extension during amoeboid chemotaxis, Cell Motil. Cytoskeleton 10: 77–90.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J.A., 1987, Effects of cytochalasin and phalloidin on actin, J. Cell Biol. 105:1473–1478.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J.A., 1991, The role of actin polymerization in cell motility, Annu. Rev. Physiol. 53:585–605.

    Article  PubMed  CAS  Google Scholar 

  • Cortese, J.D., Schwab III, B., Frieden, C, and Elson, E.L., 1989, Actin polymerization induces a shape change in actin-containing vesicles, Proc. Natl.Acad. Sci. USA 86:5773–5777.

    Article  PubMed  CAS  Google Scholar 

  • Cossart, P., and Lecuit, M., 1998, Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling, EMBO J. 17:3797–3806.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, LP., 1999, Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide, Curr. Opin. Cell Biol. 9:1095–1105.

    CAS  Google Scholar 

  • Evans, E.A., 1983, Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests, Biophys. J. 43:27–30.

    Article  PubMed  CAS  Google Scholar 

  • Finer, J.T., Simmons, R.M., and Spudich, J.A., 1994, Single myosin molecule mechanics: piconewton forces and nanometer steps, Nature 368:113–119.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich, W., and Seruvuss, R.-M., 1984, Undulations, steric interaction and cohesion of fluid membranes, Il Nuovo Cimento 3D: 137–151.

    Article  CAS  Google Scholar 

  • Hill, T.L., 1981, Microfilament or microtubule assembly or disassembly against a force, Proc. Natl. Acad. Sci. USA, 78:5613–5617.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T.L., and Kirshcner, M.W., 1982, Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work, ibid, 79:490–494.

    CAS  Google Scholar 

  • Kuo, S.C., and McGrath, J.L., 2000, Steps and fluctuations of Listeria monocytogenes during actin-based motility, Nature 409:1026–1029.

    Article  Google Scholar 

  • Lauffenburger, D.A., and Horwitz, A.F., 1996, Cell migration: a physically integrated molecular process, Cell 84:359–369.

    Article  PubMed  CAS  Google Scholar 

  • Loisel, TP., Boujeman, R., Pantaloni, D., and Carlier, M.-F., 1999, Reconstitution of actin-based motility of Listeria and Shigella using pure proteins, Nature 401:613–616.

    Article  PubMed  CAS  Google Scholar 

  • Mitchson, T.J., and Cramer, LP., 1996, Actin-based cell motility and cell locomotion, Cell 84:371-379. Miyata, H. and Hotani, H., 1992, Morphological change in liposomes caused by polymerization of encapsulated actin and spontaneous formation of actin bundles, Proc. Natl. Acad. Sci. USA, 89: 11547–11551.

    Google Scholar 

  • Miyata, H., Hakozaki, H., Yoshikawa, H., Suzuki, N., Kinosita, K. Jr., Nishizaka, T., and Ishiwata, S.-I, 1994, Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an in vitro motility assay, J. Biochem. (Tokyo) 115:644–647.

    CAS  Google Scholar 

  • Miyata, H., Nishiyama, S., Akashi, K-i., and Kinosita, K. Jr., 1999, Protrusive growth from giant liposomes driven by actin polymerization, Proc. Natl. Acad. Sci. USA, 96:2048–2053.

    Article  PubMed  CAS  Google Scholar 

  • Mogliner, A., and Oster, G., 1996, Cell motility driven by actin polymerization, Biophys. J., 71:3030–3045.

    Article  Google Scholar 

  • Pantaloni, D., LeClainche, C, and Carlier, M.-F., 2001, Mechanism of actin-based motility, Science 292: 1502–1506.

    Article  PubMed  CAS  Google Scholar 

  • Peskin, C.S., Odell, G.M., and Oster, G.F., 1993, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophys. J. 65:316–324.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D., Blanchion, L., and Mullins, R.D., 2000, Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu. Rev. Biophys. Bimol. Struct. 29:545–576.

    Article  CAS  Google Scholar 

  • Rotch, C, Jacobson, K., and Radmacher, M., 1999, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, Proc. Natl. Acad. Sci. USA. 96: 921–926.

    Article  Google Scholar 

  • Schafer, D.A., Welch, M.D., Machesky, L.M., Bridgman, P.C., Meyer, S.M., and Cooper, J.A., 1998, Visualization and molecular analysis of actin assembly in living cells, J. Cell Biol. 143:1919–1930.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, MP., Wayne, D.B., and Pearlman, A., 1992, Extension of filopodia by motor-dependent actin assembly. Cell Motil. Cytoskeleton, 22:160–169.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, MP., and Dai, J., 1996, Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol. 6:85–89.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.V., 1988, The actin cytoskeleton, Electron Microsc. Rev. 1:155–174.

    Article  PubMed  CAS  Google Scholar 

  • Small, J.V., Isenberg, G., and Celis, J.E., 1978, Polarity of actin at the leading edge of cultured cells. Nature, 272:638–639.

    Article  PubMed  CAS  Google Scholar 

  • Stossel, TP.,1993, On the crawling of animal cells, Science. 260:1086–1094.

    Google Scholar 

  • Svoboda, K., and Block, S.M., 1994, Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct. 23:247–285.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, F., Higashino, Y., and Miyata, H., Biophysical Journal, to be published.

    Google Scholar 

  • Tilney, L.G., and Portmoy, D.A., 1985, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J. Cell Biol. 109:1597–1608.

    Google Scholar 

  • Welch, M.D., Mallavarapu, A., Rosenblatt, J., and Mitchson, T.J., 1997, Actin dynamics in vivo, Curr. Opin. Cell Biol. 9:54–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Miyata, H. (2003). A Study of Lamellipodial Membrane Dynamics by Optical Trapping Technique: Implication of Motor Activity in Movements. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics