Skip to main content

Helical Order in Myosin Filaments and Evidence for One Ligand Inducing Multiple Myosin Conformations

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

Abstract

The basic processes of muscle contraction are well understood: it is a result of cyclic interactions between myosin and actin, driven by the energy of ATP hydrolysis. Since the availability of the crystal structures of the contractile proteins, and with the advent of single molecule assays, the field has made great strides in understanding the underlying processes. However, the details of the mechanism of transduction of chemical to mechanical energy still remain largely unresolved. One of the obstacles is that most of the studies at the molecular level are based on isolated, in vitro systems, e.g. the atomic structure of the myosin head is known but not its complex with actin and EM reconstruction is based on isolated filaments. The link between the information obtained from the in vitro systems and the actual processes occurring in intact muscle is still largely missing. The aim of our efforts is to provide such a link.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dominguez, R., Y. Freyzon, K.M. Trybus, and C. Cohen. 1998. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, AJ-, C.A. Smith, J.B. Thoden, R. Smith, K. Sutoh, H.M. Holden, and I. Rayment. 1995. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34:8960–8972.

    Article  PubMed  CAS  Google Scholar 

  • Frisbie. S.M., J.M. Chalovich, B. Brenner, and L.C. Yu. 1997. Modulation of cross-bridge affinity for MgGTP by Ca2+ in skinned fibers of rabbit psoas muscle. Biophys. J. 72:2255–2261.

    Article  PubMed  CAS  Google Scholar 

  • Frisbie, S.M., S. Xu, J.M. Chalovich, and L.C. Yu. 1998. Characterizations of cross-bridges in the presence of saturating concentrations of MgAMP-PNP in rabbit permeabilized psoas muscle. Biophys. J. 74:3072–3082.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M.A. and K.C. Holmes. 1999. Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68:687–728.

    Article  PubMed  CAS  Google Scholar 

  • Goodno, C.C. 1982. Myosin active-site trapping with vanadate ion. Methods Enzymol. 85 Pt B:l 16-23.: 116–123.

    Article  Google Scholar 

  • Gu, J., S. Xu, and L.C. Yu. 2002. A model of cross-bridge attachment to actin in the A*M*ATP state based on x-ray diffraction from permeabilized rabbit psoas muscle. Biophys. J 82:2123–2133.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse, A., V.N. Kalabokis, D. Himmel, A.G. Szent-Györgyi, and C. Cohen. 1999. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head [In Process Citation]. Cell 97:459–470.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse, A., A.G. Szent-Györgyi, and C. Cohen. 2000. Three conformational states of scallop myosin S1. Proc. Natl. Acad. Sci. USA 97:11238–11243.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H.E. 1968. Structural difference between resting and rigor muscle: evidence from intensity changes in the low-angle equitorial X-ray diagram. J. Mol. Biol. 37:507–520.

    Article  PubMed  CAS  Google Scholar 

  • Jahn, W., Urbanke, C, and Wray, J. Fluorescence temperature jump studies of myosin S1 structure. Biophys. J 76,A146. 1999.

    Google Scholar 

  • Lowy, J., D. Popp, and A.A. Stewart. 1991. X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles. Biophys. J. 60:812–824.

    Article  PubMed  CAS  Google Scholar 

  • Malinchik, S., S. Xu, and L.C. Yu. 1997. Temperature-Induced Structural changes in the Myosin Thick filament of skinned Rabbit Psoas Muscle. Biophys. J. 73:2304–2312.

    Article  PubMed  CAS  Google Scholar 

  • Málnási-Csizmadia, A., D.S. Pearson, M. Kovacs, R.J. Woolley, M.A. Geeves, and C.R. Bagshaw. 2001. Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue. Biochemistry 40:12727–12737.

    Article  PubMed  Google Scholar 

  • Málnási-Csizmadia, A., R.J. Woolley, and C.R. Bagshaw. 2000. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography. Biochemistry 39:16135–16146.

    Article  PubMed  Google Scholar 

  • Resetar, A.M. and J.M. Chalovich. 1995. Adenosine 5′-(gamma-thiotriphosphate): an ATP analog that should be used with caution in muscle contraction studies. Biochemistry 34:16039–16045.

    Google Scholar 

  • Schrumpf, M. and J. Wray. 1992. Structural effects of Al-F and Be-F as analogues of Pi in skeletal muscle myosin. J. Mus. Res. & Cell. Mot. 13:254a.

    Google Scholar 

  • Takemori, S., M. Yamaguchi, and N. Yagi. 1995. An X-ray diffraction study on a single frog skinned muscle fiber in the presence of vanadate. J. Biochem. (Tokyo. ) 117:603–608.

    CAS  Google Scholar 

  • Takezawa, Y., D.S. Kim, M. Ogino, Y. Sugimoto, T. Kobayashi, T. Arata, and K. Wakabayashi. 1999. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction. Biophys. J 76:1770–1783.

    Article  PubMed  CAS  Google Scholar 

  • Urbanke, C. and J. Wray. 2001. A fluorescence temperature-jump study of conformational transitions in myosin subfragment 1. Biochem. J 358:165–173.

    Google Scholar 

  • Wakabayashi. T., T. Akiba, K. Hirose, A. Tomioka, M. Tokunaga, C. Suzuki, C. Toyoshima, K. Sutoh, K. Yamamoto, T. Matsumoto, K. Sacki, and Y. Amemiya. 1988. Temperature induced changes of thick filament and location of the functional site of myosin. In Molecular Mechanism of Muscle Contraction. H. Sugi and G.H. Pollack, editors. Plenum Publishing Co., New York. 39–48.

    Google Scholar 

  • Werber, M.M., Y.M. Peyser, and A. Muhlrad. 1992. Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes. Biochemistry 31:7190–7197.

    Article  PubMed  CAS  Google Scholar 

  • Wray, J. 1987. Structure of relaxed myosin filaments in relation to nucleotide state in vertebrate skeletal muscle. J. Mus. Res. & Cell. Mot. 8:62a.

    Google Scholar 

  • Xu, S, Gu, J, Melvin, G., and Yu, L. C. 2001. Evidence that the conformation of the actomyosin complex with bound ADP.Pi (the A.M.ADP.Pi state) differs from that in the A.M.ATP state. Biophys.J 80, 267a.

    Google Scholar 

  • Xu, S., S. Malinchik, D. Gilroy, Th. Kraft, B. Brenner, and L.C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:2292–2303.

    Article  PubMed  CAS  Google Scholar 

  • Xu, S., G. Offer, J. Gu, H.D. White, and L.C. Yu. 2003. Temperature and ligand dependence of conformation and helical order in myosin filaments. Biochemistry, in press.

    Google Scholar 

  • Xu, S., J. Gu, G. Melvin, and L.C. Yu. 2002. Structural characterization of weakly attached cross-bridges in the A*M*ATP state in permeabilized rabbit psoas muscle. Biophys. J 82:2111–2122.

    Article  PubMed  CAS  Google Scholar 

  • Xu, S., J. Gu, T. Rhodes, B. Belknap, G. Rosenbaum, G. Offer, H. White, and L.C. Yu. 1999. The M.ADP.P(i) state is required for helical order in the thick filaments of skeletal muscle. Biophys. J 77:2665–2676.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Yu, L.C., Xu, S., Gu, J., White, H.D., Offer, G. (2003). Helical Order in Myosin Filaments and Evidence for One Ligand Inducing Multiple Myosin Conformations. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics