Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 538))

  • 485 Accesses

Abstract

When ATP binds to the active site of myosin heads, Switch II undergoes a large conformational change and the cleft surrounding the bound γ-phosphate closes. In the closed state, Glu470 in Switch II comes together with Arg247 in Switch I to form a salt-bridge. Here, the functional significance of the two bridging residues was tested by using site-directed mutagenesis. We conclude from such tests that (a) the attractive force between Arg247 and the γ-phosphate of ATP moves the cleft to close, and (b) during hydrolysis, Glu470 is intimately involved in positioning the lytic water for the attack on the γ-phosphorus. We also speculate on how the salt-bridge between Arg247 and Glu470 is related to hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagshaw, C. R., Eccleston, J. F., Eckstein, F., Goody, R. S., Gutfreund, H., and Trentham, D. R. (1974). The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem. J. 141, 351–364.

    PubMed  CAS  Google Scholar 

  • Bagshaw, C. R. and Trentham, D. R. (1974). The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem. J. 141, 331–349.

    PubMed  CAS  Google Scholar 

  • Coleman, D. E., Berghuis, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (1994). Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, W. A. and Ljubimowa, M. N. (1939). Myosine and adenosine triphosphatase. Nature 144, 668–669.

    Article  CAS  Google Scholar 

  • Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., and Rayment, I. (1995). X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34, 8960–8972.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, T. and Tonomura, Y. (1965). The pre-steady state of the myosin-adenosine triphosphate system. I. Initial rapid liberation of inorganic phosphate. J. Biochem. (Tokyo) 57, 604–615.

    PubMed  CAS  Google Scholar 

  • Lymn, R. W. and Taylor, E. W. (1970). Transient state phosphate production in the hydrolysis of nucleotide triphosphates by myosin. Biochemistry 9, 2975–2983.

    Article  PubMed  CAS  Google Scholar 

  • Okimoto, N., Yamanaka, K., Ueno, J., Hata, M., Hoshino, T., and Tsuda, M. (2001). Theoretical studies of the ATP hydrolysis mechanism of myosin. Biophys. J. 81, 2786–2794.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H., Morales, M. F., Kojima, S., Katoh, K., and Fujiwara, K. (1997). Functional transitions in myosin: role of highly conserved Gly and Glu residues in the active site. Biochemistry 36, 3767–3772.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H., Ohki, T., Mochizuki, N. and Morales, M. F. (2002). Early stages of enrgy transduction by myosin: Roles of Arg in Switch I, of Glu in Switch II, and of the salt-bridge between them. Proc. Natl. Acad. Sci. U.S.A 99, 15339–15344.

    Article  PubMed  CAS  Google Scholar 

  • Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W., and Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351–2359.

    PubMed  CAS  Google Scholar 

  • Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H. R., and Wittinghofer, A. (1995). Substrateassisted catalysis as a mechanism for OTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct Biol. 2, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A. and Rayment, I. (1996a). Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A. and Rayment, I. (1996b). X-ray structure of the magnesium(lI).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 35, 5404–5417.

    Article  PubMed  CAS  Google Scholar 

  • Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994). GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF4. Nature 372, 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi, A (1945). Chemistry of muscle contraction. (New York: Academic Press).

    Google Scholar 

  • Yanagisawa, M., Hamada, Y., Katsuragawa, Y., Imamura, M., Mikawa, T., and Masaki, T. (1987). Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. Implications on topography and function of myosin. J. Mol. Biol. 198, 143–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Onishi, H., Ohki, T., Mozhizuki, N., Morales, M.F. (2003). A Hypothesis About Myosin Catalysis. In: Sugi, H. (eds) Molecular and Cellular Aspects of Muscle Contraction. Advances in Experimental Medicine and Biology, vol 538. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9029-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9029-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4764-4

  • Online ISBN: 978-1-4419-9029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics