Skip to main content
  • 300 Accesses

Abstract

This part will focus on the carriers that are involved in the transport of electrolytes and acid-base equivalents, such Na+, K+, CL H+, or HCO3 . Often both functions are intricately linked not only by directly coupling the transport of. acid-base equivalents to that of electrolytes (i.e., Na+/H+ or Cl/HCO3 exchangers, Na+/HCO3 cotransport) but also because both influence whole-cell function or body fluid composition and are often regulated by the same hormonal systems. Thus it is not surprising that disorders primarily affecting either electrolyte or acid—base transport often affect cellular or whole-body electrolyte and acid—base homeostasis. In contrast to the transport of acid—base equivalents, however, the transport of electrolytes is achieved by the concerted action of transporters and a variety of ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., et al. (2002).Aquaporin Water Channels—From Atomic Structure to Clinical Medicine. J. Physiol., 542, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Birkenhager, R., Otto, E., Schurmann, M.J., Vollmer, M., Ruf, E.M., Maier-Lutz, I., et al. (2001). Mutation of BSND Causes Bartter Syndrome with Sensorineural Deafness and Kidney Failure. Nat. Genet., 29, 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Burckhardt, G. and Wolff, N.A. (2000 ). Structure of Renal Organic Anion and Cation Transporters. Am. J. Physiol. Renal Physio l., 278. F853–866.

    CAS  Google Scholar 

  • Cruz, D.N., Simon, D.B., Nelson-Williams, C., Farhi, A., Finberg, K., Burleson, L., et al. (2001). Mutations in the Na-Cl Cotransporter Reduce Blood Pressure in Humans. Hypertension, 37. 1458–1464.

    Article  PubMed  CAS  Google Scholar 

  • De Jong, J.C., Willems, P.H., Mooren, F.J., Van Den Heuvel, L.P., Knoers, N.V., and Bindels, R.J. (2003). The Structural Unit of the Thiazide-Sensitive Nacl Cotransporter (NCC) is a Homodimer. J. Biol. Chem., 278, 24302–24307.

    Article  PubMed  Google Scholar 

  • Eladari, D., Cheval, L., Quentin, F., Bertrand, O., Mouro, I., Cherif-Zahar, B., et al. (2002). Expression of RhCG, a New Putative NH3/NH4 + Transporter, Along the Rat Nephron. J. Am. Soc. Nephrol., 13, 1999–2008.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto, A., Kimura, H., Chairoungdua, A., Shigeta, Y., Jutabha, P., Cha, S.H., et al. (2002). Molecular Identification of a Renal Urate Anion Exchanger that Regulates Blood Urate Levels. Nature, 417, 447–452.

    PubMed  CAS  Google Scholar 

  • Estevez, R., Boettger, T., Stein, V., Birkenhager, R., Otto, E., Hildebrandt, F., et al. (2001). Barttin is a Cl Channel Beta-Subunit Crucial for Renal Cl Reabsorption and Inner Ear K+ Secretion. Nature, 414, 558–561.

    Article  PubMed  CAS  Google Scholar 

  • Frattini, A., Orchard, P.J., Sobacchi, C., Giliani, S., Abinun, M., Mattsson, J.P., et al. (2000). Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet., 25. 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Hamrn, L.L. and Alpern, R.J. (2000). Cellular mechanisms of renal tubular acidification. In D.W, Seldin and G, Gebisch (eds), The Kidney: Physiology and Pathophysiology (3rd ed.). Philadelphia, PA: Lippincott-Williams & Wilkins. pp. 1935–1979.

    Google Scholar 

  • Inui, K.I., Masuda, S. and Saito, H. (2000). Cellular and Molecular Aspects of Drug Transport in the Kidney. Kidney Int., 58, 944–958.

    Article  PubMed  CAS  Google Scholar 

  • Karet, F.E., Finberg, K.E., Nelson, R.D., Nayir, A., Mocan, H., Sanjad, S.A., et al. (1999). Mutations in the Gene Encoding B1 Subunit of H+-ATPase Cause Renal Tubular Acidosis with Sensorineural Deafness. Nat. Genet., 21, 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Koepsell, H. (1998). Organic Cation Transporters in Intestine, Kidney, Liver, and Brain. Annu. Rev. Physiol., 60, 243–266.

    Article  PubMed  CAS  Google Scholar 

  • Kriz, W. and Kaissling, B. (2000). Structural organization of the mammalian kidney. In D, Seldin and G, Gebisch (eds), The Kidney: Physiology and Pathopyh siology (3rd edn), Philadelphia, PA: Lippincott-Williams & Wilkins. pp. 587–654.

    Google Scholar 

  • Lifton, R.P., Gharavi, A.G. and Geller, D.S. (2000). Molecular Mechanisms of Human Hypertension. Cell, 104, 545–556.

    Article  Google Scholar 

  • Marini, A.M., Matassi, G., Raynal, V., Andre, B., Cartron, J.P., and Cherif-Zahar, B. The Human Rhesus-Associated RhAG Protein and a Kidney Homologue Promote Ammonium Transport in Yeast. Nat Genet., 26, 341–344.

    Google Scholar 

  • Martin, M.G., Turk, E., Lostao, M.P., Kerner, C., and Wright, E.M. (1996). Defects in Na+/Glucose Cotransporter (SGLT1) Trafficking and Function Cause Glucose-Galactose Malabsorption. Nat. Genet., 12, 216–220.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, T. and Forgac, M. (2002). The vacuolar (H+)-ATPases — Nature’s Most Versatile Proton Pumps. Nat. Rev. Mol. Cell. Biol., 3, 94–103.

    Article  PubMed  CAS  Google Scholar 

  • Quentin, F., Eladari, D., Cheval, L., Lopez, C., Goossens, D., Colin, Y., et al. (2003). RhBG and RhCG, the Putative Ammonia Transporters, Are Expressed in the Same Cells in the Distal Nephron. J. Am. Soc. Nephrol., 14, 545–554.

    Article  PubMed  CAS  Google Scholar 

  • Royaux, I.E., Wall, S.M., Karniski, L.P., Everett, L.A., Suzuki, K., Knepper, M.A., et al. (2001). Pendrin, Encoded by the Pendred Syndrome Gene, Resides in the Apical Region of Renal Intercalated Cells and Mediates Bicarbonate Secretion. Proc. Natl. Acad. Sci. USA, 98, 4221–4226.

    Article  PubMed  CAS  Google Scholar 

  • Russel, F.G., Masereeuw, R., and van Aubel, R.A. Molecular Aspects of Renal Anionic Drug Transport. Annu. Rev. Physiol., 64, 563–594.

    Google Scholar 

  • Sands, J.M. (2003). Mammalian Urea Transporters. Annu. Rev. Physiol., 65, 543–566.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D.B., Karet, F.E., Hamdan, J.M., DiPietro, A., Sanjad, S.A., and Lifton, R.P. (1996a). Bartter’s Syndrome, Hypokalaemic Alkalosis with Hypercalciuria, is caused by Mutations in the Na-K-2Cl cotransporter NKCC2. Nat. Genet., 13, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D.B., Karet, F.E., Rodriguez-Soriano, J., Hamdan, J.H., DiPietro, A., Trachtrnan, H., et al. (1996b). Genetic Heterogeneity of Bartter’s Syndrome Revealed by Mutations in the K+ Channel, ROMK. Nat. Genet., 14, 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D.B., Nelson-Williams, C., Bia, M.J., Ellison, D., Karet, F.E., Molina, A.M., et al. (1996c). Gitelrnan’s Variant of Bartter’ s Syndrome, Inherited Hypokalaemic Alkalosis, is caused by Mutations in the Thiazide-Sensitive Na-Cl Cotransporter. Nat. Genet., 12, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D.B., Bindra, R.S., Mansfield, T.A., Nelson-Williams, C., Mendonca, E., Stone, R., et al. (1997). Mutations in the Chloride Channel Gene, CLCNKB, Cause Banter’s Syndrome Type III. Nat. Genet., 17, 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Sly, W.S. and Shah, G.N. (2001). The Carbonic Anhydrase II Deficiency Syndrome: Osteopetrosis with Renal Tubular Acidosis and Cerebral Calcification. In C.R, Scriver, A.L, Baudet, W.S, Sly and D, Valle (eds), The Metabolic and Molecular Bases of Inherited Disease, New York: McGraw-Hill, pp. 5331–5343.

    Google Scholar 

  • Smith, A.N., Skaug, J., Choate, K.A., Nayir, A., Bakkaloglu, A., Ozen, S., et al. (2000). Mutations in ATP6N1B, Encoding a New Kidney Vacuolar Proton Pump 116-kD Subunit, Cause Recessive Distal Renal Tubular Acidosis with Preserved Hearing. Nat. Genet., 26, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Sweet, D.H., Bush, K.T., and Nigam, S.K. (2001). The Organic Anion Transporter Family: From Physiology to Ontogeny and the Clinic. Am. J. Physiol. Renal Physiol., 281, F197–F205.

    PubMed  CAS  Google Scholar 

  • van den Heuvel, L.P., Assink, K., Willemsen, M., and Monnens, L. (2002). Autosomal Recessive Renal Glucosuria Attributable to a Mutation in the Sodium Glucose Cotransporter (SGLT2). Hum. Genet., 111, 544–547.

    Article  PubMed  Google Scholar 

  • Verrey, F., Hummler, E., Schild, L., and Rossier, B. (2000). Control of Na+ Transport by Aldosterone. In D.W, Seldin and G, Griebisch (eds), The Kidney: Physiology and Pathophysiology (3rd edn), Philadelphia, PA: Lippincott-Williams & Wilkins, pp. 1441–1471.

    Google Scholar 

  • Wagner, C.A. and Geibel, J.P. (2002). Acid-Base Transport in the Collecting Duct. J. Nephrol., Suppl. 5, S112–S127.

    Google Scholar 

  • Wilson, F.H., Disse-Nicodeme, S., Choate, K.A., Ishikawa, K., Nelson-Williams, C., Desitter, I., et al. (2001). Human Hypertension Caused by Mutations in WNK Kinascs. Science, 293, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, F.H., Kahle, K.T., Sabath, E., Lalioti, M.D., Rapson, A.K., Hoover, R.S., et al. (2003). Molecular Pathogenesis of Inherited Hypertension with Hyper-kalemia: The Na-Cl Cotransporter is Inhibited by Wild-Type but not Mutant WNK4. Proc. Natl Acad. Sci. USA, 100, 680–684.

    Article  PubMed  CAS  Google Scholar 

  • Woo, A.L., Noonan, W.T., Schultheis, P.J., Neumann, J.C., Manning, P.A., and Lorenz, J. Renal Function in NHE3-Deficient Mice with Transgenic Rescue of Small Intestinal Absorptive Defect. Am. J. Physiol. Renal Physiol., 284, F1190–F1198.

    Google Scholar 

  • Yang, C.L., Angell, J., Mitchell, R. and Ellison, D.H. (2003). WNK Kinases Regulate Thiazide-Sensitive Na-Cl Cotransport. J. Clin. Lnvest., 111, 1039–1045.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wagner, C.A. (2003). Introduction. In: Bröer, S., Wagner, C.A. (eds) Membrane Transporter Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9023-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9023-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4761-3

  • Online ISBN: 978-1-4419-9023-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics