Lysosomal sialic acid transporter sialin (SLC17A5): sialic acid storage disease (SASD)

  • Frans W. Verheijen
  • Grazia M. S. Mancini


Lysosomes are intracellular organelles acidified by a vacuolar proton pump. They contain a wide variety of acid hydrolases for degradation of intra- and extracellular macromolecules and are surrounded by a single lipid bilayer membrane. Initially the lysosomal membrane was considered to be only a mechanical border separating the acid lysosomal environment from the neutral environment of the surrounding cytoplasm. Therefore lysosomes were considered the “terminal degradative compartment” of the cell and their function was strictly linked to cellular catabolism. However, two inborn errors of metabolism — cystinosis and sialicacid storage disorders — have contributed to a more thorough understanding of lysosomal membrane transport function.As we know now, the lysosomal membrane contains special transport proteins for both export and import (Mancini et al. 2000).


Sialic Acid Glucuronic Acid Lysosomal Membrane Special Transport Protein Vacuolar Proton Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aula, P., Autio, S., Raivio, K.O., Rapola, J., Thodén, C.J., Koskela, S.L., et al. (1979). “Salla disease.” A New Lysosomal Storage Disorder. Arch. Neurol., 36, 88–94.PubMedCrossRefGoogle Scholar
  2. Aula, P., Renlund, M., and Raivio, K. ( 1986). Screening of Inherited Oligosaecharidurias among Mentally Retarded Patients in Northern Finland. J. Ment. Defic. Res., 30, 365–368.PubMedGoogle Scholar
  3. Aula, N., Salomaki, P., Timonen, R., Verheijen, E, Mancini, G., Mansson, J.E., et al. (2000). The Spectrum of SLCI 7A5-Gene Mutations Resulting in Free Sialic Acid-Storage Diseases Indicates Some GenotypePhenotype Correlation. Am. J. Hum. Genet., 67, 832–840.PubMedCrossRefGoogle Scholar
  4. Bellocchio, E.E., Reimer, R.J., Fremeau, R.T., Jr, and Edwards, R.H. (2000). Uptake of Glutamate into Synaptic Vesicles by an Inorganic Phosphate Transporter. Science, 289, 957–960.PubMedCrossRefGoogle Scholar
  5. Haataja, L., Parkkola, R., Sonninen, P., Vanhanen, S.L., Schleutker, L, Aarimaa, T., et al. (1994 ). Phenotypic Variation and Magnetic Resonance Imaging (MRI) in Salla Disease, a Free Sialic Acid Storage Disorder. Neuropediatrics, 25, 238–244.PubMedCrossRefGoogle Scholar
  6. Havelaar, A.C., Mancini, G.M.S., Beerens, C.E.M.T., Souren, R.M.A., and Verheijen, EW. ( 1998). Purification of the Lysosomal Sialic Acid Transporter. Functional Characteristics of a Monocarboxylate Transporter. J. Biol. Chem., 273, 34568–34574.PubMedCrossRefGoogle Scholar
  7. Havelaar, A.C., Beercns, C.E., Mancini, G.M.S., and Verheijen, EW. (1999). Transport of Organic Anions by the Lysosomal Sialic Acid Transporter: A Functional Approach toward s the Gene for Sialic Acid Storage Disease. FEBS Lett., 446, 65–68.PubMedCrossRefGoogle Scholar
  8. Hayashi, M., Otsuka, M., Morimoto, R., Hirota, S., Yatsushiro, S., Takeda, J., et al. (2001). Differentiation-Associated Na+-Dependent Inorganic Phosphate Cotransporter (DNPI) is a Vesicular Glutamate Transporter in Endocrine Glutamatergic Systems. J. Biol. Chem., 276, 43400–43406.PubMedCrossRefGoogle Scholar
  9. Leppänen. P., Isosornppi, L, Schleutker, J., Aula, P., and Peltonen, L. (1996). A Physical Map of the 6q 14-q 15 Region Harboring the Locus for the Lysosomal Membrane Sialic Acid Transport Defect. Genomics, 37, 62–67.PubMedCrossRefGoogle Scholar
  10. Mancini, G.M.S., de Jonge, H.R., Galjaard, H., and Verheijen, EW. (1989). Characterization of a ProtonDriven Carrier for Sialic Acid in the Lysosomal Membrane. Evidence for a Group-Specific Transport System for Acidic Monosaccharides. J. Biol. Chem., 264,15247–15254.PubMedGoogle Scholar
  11. Mancini, G.M.S., Beerens, C.E.M.T., Aula, P.P., and Verheijen, EW. (1991). SialicAcid Storage Diseases. A Multiple Lysosomal Transport Defect for Acidic Monosaccharides. J. clin. Invest., 87, 1329–1335.PubMedCrossRefGoogle Scholar
  12. Mancini, G.M.S., Beerens, C.E.M.T., Galjaard. H., and Verheijen, EW. (1992a). Functional Reconstitution of the Lysosomal Sialic Acid Carrier into Proteoliposornes. Proc. Natl Acad. Sci. USA, 89, 6609–6613.PubMedCrossRefGoogle Scholar
  13. Mancini, G.M.S., Hu, P., Verheijen, EW., van Diggelen, O.P., Janse, H.C., Kleijer, W.J., et al. ( 1992b). Salla Disease Variant in a Dutch Patient. Potential Value of Polymorphonuclear Leucocytes for Heterozygote Detection. Eur. J. Pediatr., 151, 590–595.PubMedCrossRefGoogle Scholar
  14. Mancini, G.M.S., Havelaar, A.C., and Verheijen, EW (2000). Lysosomal Transport Disorders. J. Inherit. Metab. Dis., 23, 278–292.PubMedCrossRefGoogle Scholar
  15. Pao, S.S., Paulsen, LT., and Saier, M.H., Jr (1998). Major Facilitator Superfamily. Microbial. Mol. Biol. Rev., 62, 1–34.Google Scholar
  16. Pitto, M., Chigomo, Y, Renlund, M., and Tettamanti, G. (1996). Impairment of Gangliosid e Metabolism in Cultured Fibroblasts from Salla Patients. Clin. Chim. Acta, 247, 143–157.PubMedCrossRefGoogle Scholar
  17. Renlund, M., Tietze, E, and Gahl, W.A. ( 1986). Defective Sialic Acid Egress from Isolated Fibroblast Lysosomes of Patients with Salla Disease. Science, 232, 759–762.PubMedCrossRefGoogle Scholar
  18. Salomaki, P., Aula, N., Juvonen, Y, Renlund, M., and Aula, P. (2001). Prenatal Detection of Free Sialic Acid Storage Disease: Genetic and Biochemical Studies in Nine Families. Prenat. Diagn., 21,354–358.PubMedCrossRefGoogle Scholar
  19. Schauer, R. (2000). Achievements and Challenges of Sialic Acid Research. Glycoconj. J., 17,485–499.PubMedCrossRefGoogle Scholar
  20. Schleutker, J., Laine, A.P., Haataja, L., Renlund, M., Weissenbach, J., Aula, P., et al. (1995a). Link age Disequilibrium Utilized to Establish a Refined Genetic Position of the Salla Disease Locus on 6q14-q15. Genomics, 27, 286–292.PubMedCrossRefGoogle Scholar
  21. Schleutker, J., Leppanen, P., Mansson, J.-E., Erikson, A., Weissenbach, J., Peltonen, L., et al. (1995b). Lysosomal Free Sialic Acid Storage Disorders with Different Phenotypic Presentations, ISSD and Salla disease, Represent Allelic Disorder s on 6q14-15. Am. J. Hum. Genet., 57, 893–901.PubMedGoogle Scholar
  22. Schwarzkopf, M., Knobeloch, K.P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., et al. (2002). Sialylation is Essential for Early Development in Mice. Proc. Natl Acad. Sci. USA, 99, 5267–5270.PubMedCrossRefGoogle Scholar
  23. Verheijen, EW, Verbeck, E., Aula, N., Beerens, C.E., Havelaar, A.C., Joosse, M., et al. (1999). A New Gene, Encoding an Anion Transporter, is Mutated in Sialic Acid Storage Diseases. Nat. Genet., 23, 462–465.PubMedCrossRefGoogle Scholar
  24. Weiss, P., Tietze, E, Gahl, WA., Seppala, R., and Ashwell, G. (1989). Identification of the Metabolic Defect in Sialuria. J. Biol. Chem., 264, 17635–17636.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Frans W. Verheijen
    • 1
  • Grazia M. S. Mancini
    • 1
  1. 1.Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands

Personalised recommendations