Skip to main content

Glutamate Metabolism in Primary Cultures of Rat Brain Astrocytes: Rationale and Initial Efforts Toward Developing a Compartmental Model

  • Chapter
Mathematical Modeling in Nutrition and the Health Sciences

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 537))

Abstract

During the past 20 years, there has been a tremendous increase in neuroscience research and in the amount of information known about the brain. However, there is a great need to integrate the many bits of knowledge about subcellular processes and molecular mechanisms into the broader context of cellular function and into an overall picture of the dynamic neuronal/glial interactions essential for brain function. The area of brain energy metabolism and neurotransmission has undergone a dramatic resurgence in recent years. It is a field replete with exciting new findings that have overturned long-held ‘dogmas’ and contributed greatly to our understanding of how closely disturbances in energy metabolism are associated with clinical conditions that involve neurodegeneration. The rapid advances in this field are a result of sophisticated methodologies including 13C, 15N, 31P, and 1H nuclear magnetic resonance spectroscopy (NMR) and GC/MS, in vivo microdialysis, implantable electrodes capable of measuring metabolite changes in real time, in vivo imaging, and molecular biology techniques. These techniques have enabled researchers to ask more complex questions about mechanisms underlying metabolic alterations in both normal and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assaf, H.M., Ricci, A.J., Whittingham, T.S., LaManna, J.C., Ratcheson, R.A., and Lust, W.D., 1990, Lactate compartmentation in hippocampal slices: evidence for a transporter, Metab. Brain Dis. 5:143–154.

    Article  Google Scholar 

  • Bachelard, H., 1998, Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of neuronal/glial relationships, Dev. Neurosci. 20:27–288.

    Article  Google Scholar 

  • Badar-Goffer, R.S., Bachelard, H.S., and Morris P.G., 1990, Cerebral metabolism of acetate and glucose studied by 13C-NMR spectroscopy: a technique for investigating metabolic compartmentation in the brain, Biochem. J. 266:133–139.

    Google Scholar 

  • Bader-Goffer, R.S., Ben-Yoseph, O., Bachelard, H.S., and Morris, P.G., 1992, Neuronal-glial metabolism under depolarizing conditions. A 13C-n.m.r. study, Biochem. J. 282:225–230.

    Google Scholar 

  • Bakken, I.J., White L.R., Aasly, J., Unsgard, G., and Sonnewald, U., 1997, Lactate formation from [U-13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism, Neurosci. Lett. 237:117–120.

    Article  Google Scholar 

  • Beeckmans, S., and Kanarek, L., 1981, Demonstration of a physical interaction between consecutive enzymes of citric acid cycle and of the malate aspartate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthetase, and aspartate aminotransferase, Europ. J. Biochem. 117:527–535.

    Article  Google Scholar 

  • Beeckmans, S., Driessche, E.V., and Kanarek, L., 1990, Clustering of sequential enzymes in the glycolytic pathway and the citric acid cycle, J. Cell Biochem. 43:297–306.

    Article  Google Scholar 

  • Berl, S., and Clark, D.D., 1969, Metabolic compartmentation of glutamate in the CNS, in: Handbook of Neurochemistry. Chemical and Cellular Architecture, Vol. 1, A. Lajtha, ed., Plenum Press, New York.

    Google Scholar 

  • Berman, M., and Weiss, M.F., 1978, SAAM Manual, DHEW Publ. #78–180, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Berman, M., Beltz, W.F., Greif, P.C., Chabay, R., and Boston, R.C., 1983, CONSAM User’s Guide, PHS Publ. #1983–421, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Browning, E.T., and Nicklas, W.J., 1982, Induction of glutamine synthetase by dibuturyl cyclic AMP in C-6 glioma cells. J. Neurochem. 39:336–341.

    Article  Google Scholar 

  • Cerdan, S., Kunnecke, B., and Seelig, J., 1990, Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR, J. Biol. Chem. 265:12916–12926.

    Google Scholar 

  • Chan, P.H., Chu, L., and Chen, S., 1990, Effects of MK-801 on glutamate-induced swelling of astrocytes in primary culture, J. Neurosci. Res. 25:87–93.

    Article  Google Scholar 

  • Clifford, A.J., and Miiller H.-G., 1998, Mathematical Modeling in Experimental Nutrition, Plenum Press, New York.

    Google Scholar 

  • Daihkin, Y., and Yudkoff, M., 1998, Ketone bodies and brain glutamate and GABA metabolism, Dev. Neurosci., 20:358–64.

    Article  Google Scholar 

  • Dringen, R., and Hamprecht, B., 1996, Glutathione content as an indicator for the presence of metabolic pathways of amino acids in astroglial cultures, J. Neurochem. 67:1375–1382.

    Article  Google Scholar 

  • Erecinska, M., Zaleska, M.M., Nissim, I., Nelson, D., Dagani, F., and Yudkoff, M., 1988, Glucose and synaptosomal glutamate metabolism: studies with [15N]glutamate, J. Neurochem. 51:892–902.

    Article  Google Scholar 

  • Fahien, L.A., Kmiotek, E.H., MacDonald, M.J., Fibrich, B., and Mandic, M., 1988, Regulation of malate dehydrogenase by glutamate, citrate, a-ketoglutarate, and multienzyme interactions, J. Biol. Chem. 263:10687–10697.

    Google Scholar 

  • Fahien, L.A., MacDonald, M.J., Teller, J.K., Fibich, B., and Fahien, C.M., 1989, Kinetic advantages of hetero enzyme complexes with glutamate dehydrogenase and the a-ketoglutarate dehydrogenase complex, J. Biol. Chem. 264:12303–12312.

    Google Scholar 

  • Foster, D.M., and Boston, R.C., 1983, The use of computers in compartmental analysis: the SAAM and CONSAM programs, in: Compartmental Distribution of Radiotracers, J.S. Robertson, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Gruetter, R., Seaquist, E.R., Kim, S., and Ugurbil, K., 1998, Localized in vivo 13C NMR of glutamate metabolism in the human brain. Initial results at 4 Tesla, Dev. Neurosci. 20:380–388.

    Article  Google Scholar 

  • Harkany, T., Abraham, T., Timmerman, W., Laskay, G., Toth, B., Sasvari, M., Konya, C., Sebens, J.B., Korf, J., Nyakas, C., Zarandi, M., Soos, K., Penke, B., and Luiten, P.G., 2000, Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis, Europ. J. Neurosci. 12:2735– 2745.

    Google Scholar 

  • Hassel, B., and Sonnewald, S., 1995, Glial formation of pyruvate and lactate from TCA cycle intermediates:implications for inactivation of transmitter amino acids, J. Neurochem. 65:2227–2234.

    Article  Google Scholar 

  • Hassel, B., Bachelard, H., Fonnum, F., Jones, P., and Sonnewald, U., 1997, Trafficking of amino acids between neurons and glia in vivo. Effects of inhibition of glial metabolism by fluoroacetate, J. Cereb. Blood Flow Metab. 17:1230–1238.

    Article  Google Scholar 

  • Heales, S.J., Bolanos, J.P., Stewart, V.C., Brookes, P.S., Land, J.M., and Clark, J.B., 1999, Nitric oxide, mitochondria and neurological disease, Biochim. Biophys. Acta 1410:215–228.

    Article  Google Scholar 

  • Hertz, L., 1979, Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters, Prog. Neurobiol. 13:277–323.

    Article  Google Scholar 

  • Hertz, L., and Schousboe, A., 1988, Metabolism of glutamate and glutamine in neurons and astrocytes in primary cultures, in: Glutamate and Glutamine in Mammals, Vol. 2, E. Kvamme, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Izquierdo, I., Barros, D.M., Izquierdo, L., Mello e Souza, T., Souza, M., and Medina, J.H., 1997, Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures, Neurobiol. Learn. Mem. 68:285–316.

    Article  Google Scholar 

  • Kunnecke, B., Cerdan, S., and Seelig, J., 1993, Cerebral metabolism of [l,2-13C2]glucose and [U- C4]3- hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy, NMR Biomed. 6: 264–277.

    Article  Google Scholar 

  • Lai, J.C., Walsh, J.M., Dennis, S.C., and Clark, J.B., 1977, Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization, J. Neurochem. 28:625–631.

    Article  Google Scholar 

  • Lai, J.C.K., and Clark, J.B., 1989, Isolation and characterization of synaptic and nonsynaptic mitochondria from the mammalian brain, in: Neuromethods, Vol. II, Carbohydrates and Energy Metabolism, A.A. Boulton and G.B. Baker, eds., Humana Press, Clifton.

    Google Scholar 

  • Magistretti, P.J., Pellerin, L., Rothman, D.L., and Shulman, R.G., 1999, Energy on demand, Science 283:496– 497.

    Article  Google Scholar 

  • Malik, P., McKenna, M.C, and Tildon, J.T., 1993, Regulation of malate dehydrogenases from neonatal adolescent and mature rat brain, Neurochem. /tes. 18:247–257.

    Google Scholar 

  • Mason, G.F., Gruetter, R., Rothman, D.L., Behar, K.L., Shulman, R.G., and Novotny, E.J., 1995, Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR, J. Cereb. Blood Flow Metab. 15:12–25.

    Article  Google Scholar 

  • Max, S.R., Landry, M.E., and Zielke, H.R., 1990, Induction of glutamine synthetase by 8-bromo cyclic AMP in primary cultures of rat astrocytes, Neurochem. Res. 15:589–592.

    Article  Google Scholar 

  • McKenna, M.C, and Edmond, J., 1998, Energy Metabolism in Brain Function and Neuroprotection.Developmental Neuroscience, Vol. 20, S. Karger AG, Basel.

    Google Scholar 

  • McKenna, M.C, Tildon, J.T., Couto, R., Stevenson, J.H., and Caprio, F.J., 1990, The metabolism of malate by cultured rat brain astrocytes, Neurochem. Res. 15:1211–1220.

    Article  Google Scholar 

  • McKenna, M.C, Tildon, J.T., Stevenson, J.H., Boatright, R., and Huang, X., 1993, Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate, Dev. Neurosci. 15:320–329.

    Article  Google Scholar 

  • McKenna, M.C, Tildon, J.T., Stevenson, J.H., Huang, X., and Kingwell, K.G., 1995, Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes, Neurochem. Res. 20:1491– 1501.

    Google Scholar 

  • McKenna, M.C, Sonnewald, U., Huang, X., Stevenson, J.H., and Zielke, H.R., 1996a, Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes, J. Neurochem. 66:386–393.

    Article  Google Scholar 

  • McKenna, M.C., Tildon, J.T., Stevenson, J.H., and Huang, X., 1996b, New insights into the compartmentation of glutamate and glutamine metabolism in astrocytes, Dev. Neurosci. 18:380–390.

    Article  Google Scholar 

  • McKenna, M.C., Sonnewald, U., Huang, X., Stevenson, J.H., Johnsen, S.F., Sande, L.M., and Zielke, H.R., 1998a, a-Ketoisocaproate alters the production of both lactate and aspartate from [U-13C]glutamate in astrocytes: a 13C-NMR study, J. Neurochem. 70:1001–1008.

    Article  Google Scholar 

  • McKenna, M.C., Tildon, J.T., Stevenson, J.H., Hopkins, I.B., Huang, X., and Couto, R., 1998b, Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity, Dev. Neurosci. 20:300–309.

    Article  Google Scholar 

  • McKenna M.C., Stevenson J.H., Huang X., and Hopkins I.B., 2000a, Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals, Neurochem. Intl. 37:229–241.

    Article  Google Scholar 

  • McKenna M.C., Stevenson J.H., Huang X., Tildon, J.T., Zielke, C.L., and Hopkins I.B., 2000b, Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells, Neurochem. Int. 36:451–459.

    Article  Google Scholar 

  • Nagaraja, T.N., and Brookes, N., 1996, Glutamine transport in mouse cerebral astrocytes, J. Neurochem. 66:1665–1674.

    Article  Google Scholar 

  • Nicklas, W.J., 1998, Introduction, Dev. Neurosci. 20:399–400.

    Google Scholar 

  • Norenberg, M.D., and Martinez-Hernandez, A., 1979, Fine structural localization of glutamine synthetase in astrocytes of rat brain, Brain Res. 161:303–310.

    Article  Google Scholar 

  • Norenberg, M.D., Huo, Z., Neary, J.T., and Roig-Cantesano, A., 1997, The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission, Glia 21:124–133.

    Article  Google Scholar 

  • Novotny, J.A., and Caballero, B., 1998, Compartmental modeling of human lactation, in: Mathematical Modeling in Experimental Nutrition, A.J. Clifford and H.-G. Müller, eds., Plenum Press, New York.

    Google Scholar 

  • Patel, A.J., Hunt, A., and Faraji-Shadan, F., 1986, Effect of removal of glutamine and addition of dexamethasone on the activities of glutamine synthetase, ornithine decarboxylase and lactate dehydrogenase in primary cultures of forebrain and cerebellar astrocytes, Dev. Brain Res. 26:229–238.

    Article  Google Scholar 

  • Pellerin, L., and Magistretti, P.J., 1994, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. USA 91:10625–10629.

    Article  Google Scholar 

  • Pellerin, L., Pellegri, G., Martin, J.L., and Magistretti, P.J., 1998, Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal versus adult brain, Proc. Nat. Acad. Sci. USA 95:3990–3995.

    Article  Google Scholar 

  • Perry, T.L., and Hansen S., 1981, Amino acid abnormalities in epileptogenic foci, Neurology 31:872–876.

    Article  Google Scholar 

  • Petroff, O.A.C., Burlina, A.P., Black, J., and Prichard, J.W., 1991, Metabolism of [1- C]glucose in a synaptosomally enriched fraction of rat cerebrum studied by 1H/13C magnetic resonance spectroscopy, Neurochem. Res. 16:1245–1251.

    Article  Google Scholar 

  • Plaitakas, A., Berl, S., and Yaho, M.D., 1982, Abnormal glutamate metabolism in an adult-onset degenerative neurological disease, Science 216:193–196.

    Article  Google Scholar 

  • Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M., Howseman, A., Hanstock, C, and Shulman, R., 1991, Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation, Proc. Natl. Acad. Sci. USA 88:5829–5831.

    Article  Google Scholar 

  • Ranson, B.R., and Fern, R., 1997, Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21:134–141.

    Article  Google Scholar 

  • Roeder, L.M., Williams, I.B., and Tildon, J.T., 1985, Glucose transport in astrocytes: regulation by thyroid hormone, J. Neurochem. 45:1653–1657.

    Article  Google Scholar 

  • Rothman, S.M., and Olney, J.W., 1986, Glutamate and the pathophysiology of hypoxic-ischemic brain damage, Ann. Neurol. 19:105–111.

    Article  Google Scholar 

  • Schousboe, A., Drejer, J., and Hertz, L., 1988, Uptake and release of glutamate and glutamine in neurons and astrocytes in primary culture, in: Glutamine and Glutamate in Mammals, Vol. 2, E. Kvamme, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Schousboe, A., Westergaard, N., Sonnewald, U., Petersen, S.B., Huang, R., Peng, L., and Hertz, L, 1993, Glutamate and glutamine metabolism and compartmentation in astrocytes, Develop. Neurosci. 15:359– 366.

    Article  Google Scholar 

  • Schousboe, A., Westergaard, N., Waagepetersen, H., Larsson, O.M., Bakken, I.J., and Sonnewald, U., 1997, Trafficking between glia and neurons of TCA cycle intermediates and related metabolites, Glia 21:99–105.

    Article  Google Scholar 

  • Schurr, A., West, C.A., and Rigor, B.M., 1988, Lactate-supported synaptic function in the rat hippocampal slice preparation, Science 240:1326–1328.

    Article  Google Scholar 

  • Shank, R.P., and Aprison, M.H., 1988, Glutamate as a neurotransmitter, in: Glutamine and Glutamate in Mammals, Vol. 2, E. Kvamme, ed., CRC Press, Boca Raton.

    Google Scholar 

  • Shank R.P., Leo G.C., and Zielke, H.R., 1993, Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of D-[l-13C]glucose metabolism, J. Neurochem. 61:315–323.

    Article  Google Scholar 

  • Shank, R.P., Gardocki, J.F., Streeter, A.J., and Maryanoff, B.E., 2000, An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action, Epilepsia 41:S3–9.

    Article  Google Scholar 

  • Shen, J., Sibson, N.R., Cline, G., Behar, K.L., Rothman, D.L., and Shulman, R.G., 1998, l5N-NMR spectroscopy studies of ammonia transport and glutamine synthesis in the hyperammonemic rat brain, Neuroscience 20:434–443.

    Google Scholar 

  • Sibson, N.R., Dhankhar, A., Mason, G.F., Rothman, D.L., Behar, K.L., and Shulman, R.G., 1998, Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity, Proc. Natl. Acad. Sci. USA 95:316–321.

    Article  Google Scholar 

  • Sibson, N.R., Mason, G.F., Shen, J., Cline, G.W., Herskovits, A.Z., Wall, J.E.M., Behar, K.L., Rothman, D.L., and Shulman, R.G., 2001, In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-l3C]glucose infusion, J. Neurochem. 76:975–989.

    Article  Google Scholar 

  • Sonnewald, U., Westergaard, N., Petersen, S.B., Unsgard, G., and Schousboe, A., 1993a, Metabolism of [U- l3C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle, J. Neurochem. 61:1179–1182.

    Article  Google Scholar 

  • Sonnewald, U., Westergaard, N., Schousboe, A., Svendsen, J.A., Unsgard, G., and Petersen, S.B., 1993b, Direct demonstration by [l3C]NMR spectroscopy that glutamine from astrocytes is a precursor for GAB A synthesis in neurons, Neurochem. Intl. 22:19–29.

    Article  Google Scholar 

  • Szapiro, G., Izquierdo, L.A., Alonso, M., Barros, D., Paratcha, G., Ardenghi, P., Pereira, P., Medina, J.H., and Izquierdo, I., 2000, Participation of hippocampal metabotropic glutamate receptors, protein kinase A and mitogen-activated protein kinases in memory retrieval, Neuroscience 99:1–5.

    Article  Google Scholar 

  • Tildon, J.T., Roeder, L.M., and Stevenson, J.H., 1985, Substrate oxidation by isolated rat brain mitochondria and synaptosomes, J. Neurosci. Res. 14:207–215.

    Article  Google Scholar 

  • Tildon, J.T., McKenna, M.C, Stevenson, J.H., and Couto, R., 1993, Transport of L-lactate by cultured rat brain astrocytes, Neurochem. Res. 18:177–184.

    Article  Google Scholar 

  • Van den Berg, C.J., 1970, Compartmentation of glutamate metabolism in the developing brain: experiments with labeled glucose, acetate, phenylalanine, tyrosine and proline, J. Neurochem. 17:973–983.

    Article  Google Scholar 

  • Van den Berg, C.J., and Garfmkel, D., 1971, A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain, Biochem. J. 123:211–218.

    Google Scholar 

  • Van den Berg, C.J., Matheson, D.F., Ronda, G., Reijnierse, G.L.A., Blokhuis, G.G.D., Kroon, M.C, Clarke, D.D., and Garfmkel, D., 1975, A model of glutamate metabolism in brain: a biochemical analysis of a heterogeneous structure, in: Metabolic Compartmentation and Neurotransmission—Relation to Brain Function, S. Berl, D.D. Clarke, and S. Schneider, eds., Plenum Press, New York.

    Google Scholar 

  • Vannucci, S.J., Clark, R.R., Koehler-Stec, E., Li, K., Smith, C, Davies, P., Maher, F., and Simpson, I.A., 1998, Glucose transporter expression in brain: relationship to cerebral glucose utilization, Dev. Neurosci. 20:369–379.

    Article  Google Scholar 

  • v. Reinersdorff, D., Green, M.H., and Green, J.B., 1998, Development of a compartmental model describing the dynamics of vitamin A metabolism in men, in: Mathematical Modeling in Experimental Nutrition, A.J. Clifford and Miiller, H.-G., eds., Plenum Press, New York.

    Google Scholar 

  • Waagepetersen, H.S., 2000, Compartmentation of Energy and Amino Acid Metabolism in Neurons and Astrocytes: Implications for Glutamate and GABA Biosynthesis, Ph.D. Thesis, Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen.

    Google Scholar 

  • Waagepetersen, H., Bakken, I.J., Larsson, O.M., Sonnewald, U., and Schousboe, A., 1998a, Metabolism of lactate in cultured GABAergic neurons studied by l3C NMR spectroscopy, J. Cereb. Blood Flow. Metab. 18:109–117.

    Article  Google Scholar 

  • Waagepetersen, H., Bakken, I.J., Larsson, O.M., Sonnewald, U., and Schousboe, A., 1998b, Comparison of lactate and glucose metabolism in cultured neocortical neurons using l3C NMR spectroscopy, Dev. Neurosci. 20:310–321.

    Article  Google Scholar 

  • Waagepetersen, H., Sonnewald, U., Larsson, O.M., and Schousboe, A., 1999, Synthesis of vesicular GABA from glutamine involves TCA cycle metabolism in neocortical neurons, J. Neurosci. Res. 57:342–349.

    Article  Google Scholar 

  • Waniewski, R.A., 1992, Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures, J. Neurochem. 58:167–174.

    Article  Google Scholar 

  • Waniewski, R.A., and Martin, D.L., 1986, Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures, J. Neurochem. 47:304–313.

    Article  Google Scholar 

  • Waniewski, R.A., and Martin, D.L., 1998, Preferential utilization of acetate by astrocytes is attributable to transport, J. Neurosci. 18:5225–5233.

    Google Scholar 

  • Wastney, M.E., Patterson, B.H., Linares, O.A., Greif, P.C., and Boston, R.C., 1999, Investigating Biological Systems Using Modeling: Strategies and Software, Academic Press, San Diego.

    Google Scholar 

  • Westergaard, N., Sonnewald, U., Petersen, S.B., and Schousboe, A., 1995a, Glutamate and glutamine metabolism in cultured GABAergic neurons studied by 13C NMR spectroscopy may indicate compartmentation and mitochondrial heterogeneity, Neurosci. Lett. 185:24–28.

    Article  Google Scholar 

  • Westergaard, N., Sonnewald, U., and Schousboe A., 1995b, Metabolic trafficking between neurons and astrocytes: the glutamate/glutamine cycle revisited, Dev. Neurosci. 17:203–211.

    Article  Google Scholar 

  • Yu, A.C.H., Schousboe, A., and Hertz, L, 1982, Metabolic fate of [14C]-labelled glutamate in astrocytes, J. Neurochem. 39:964–966.

    Google Scholar 

  • Yu, A.C.H., Drejer, J., Hertz, L, and Schousboe, A., 1983, Pyruvate carboxylase activity in primary cultures of astrocytes and neurons, J. Neurochem. 41:1484–1487.

    Article  Google Scholar 

  • Yudkoff, M., Nissim, I., Hummeler, K., Medow, M., and Pleasure, D., 1986, Utilization of [15N]glutamate by cultured astrocytes, Biochem. J. 234:185–192.

    Google Scholar 

  • Yudkoff, M., Nissim, I., and Pleasure, D., 1988, Astrocyte metabolism of N and 13C glutamine: implications for the glutamine-glutamate cycle, J. Neurochem. 51:843–850.

    Article  Google Scholar 

  • Yudkoff, M., Pleasure, D., Cregar, L., Lin, Z.-P., Nissim I., Stem, J., and Nissim I., 1990, Glutathione turnover in cultured astrocytes: studies with [l5N]glutamate, J. Neurochem. 55:137–145.

    Article  Google Scholar 

  • Yudkoff, M., Nelson, D., Daikhin, Y., and Erecinska, E., 1994, Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle, J. Biol. Chem. 269:27414– 27420.

    Google Scholar 

  • Yudkoff, M., Daikhin, Y., Nissim, I., Gmnstein, R., and Nissim, I., 1997, Effect of ketone bodies on astrocyte amino acid metabolism, J. Neurochem. 69:682–692.

    Article  Google Scholar 

  • Zeevalk, G.D., Bernard, L.P., Sinha, C., Ehrhart, J., and Nicklas, W.J., 1998, Excitotoxicity and oxidative stress during inhibition of energy metabolism, Dev. Neurosci. 20:444–453.

    Article  Google Scholar 

  • Zielke, H.R., 1985, Determination of amino acids in brain by high-pressure liquid chromatography with isocratic elution and electrochemical detection, J. Chromat. 349:320–324.

    Article  Google Scholar 

  • Zielke, H.R., Tildon, J.T., Landry, M.E., and Max, S.R., 1990, Effect of 8-bromo-cAMP and dexamethasone on glutamate metabolism in rat astrocytes, Neurochem. Res. 15:1115–1122.

    Article  Google Scholar 

  • Zielke, H.R., Collins, R.M. Jr., Baab, P.J., Huang, Y., Zielke, C.L., and Tildon, J.T., 1999, Compartmentation of [14C]glutamate and [14C]glutamine oxidative metabolism in the rat hippocampus as determined by microdialysis, J. Neurochem. 71:1315–1320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKenna, M.C. (2003). Glutamate Metabolism in Primary Cultures of Rat Brain Astrocytes: Rationale and Initial Efforts Toward Developing a Compartmental Model. In: Novotny, J.A., Green, M.H., Boston, R.C. (eds) Mathematical Modeling in Nutrition and the Health Sciences. Advances in Experimental Medicine and Biology, vol 537. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9019-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9019-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4759-0

  • Online ISBN: 978-1-4419-9019-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics