Advertisement

Calcium Utilization in Young Women: New Insights from Modeling

  • Meryl E. Wastney
  • Berdine R. Martin
  • Rebecca J. Bryant
  • Connie M. Weaver
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 537)

Abstract

Low bone mass is associated with increased risk of fracture or osteoporosis (Fig. 1). Bone mass increases with age to a peak that, depending on skeletal site, ranges from 16 years to the second or third decade of life. Subsequently, bone mass plateaus and then decreases gradually throughout life at rates of approximately 1%/year. Because bone mass is largely established during adolescence, osteoporosis has been termed a pediatric disease (Chesnut, 1988). One way to focus on improving bone health is to increase our understanding of calcium metabolism in young subjects.

Keywords

Bone Mass Bone Resorption Calcium Intake Pool Size Peak Bone Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, S.A., O’Brien, K.O., Liang, L.K., and Stuff, J.E., 1995, Differences in calcium absorption and kinetics between black and white girls aged 5–16 years, J. Bone Min, Res. 10:829–833.CrossRefGoogle Scholar
  2. Abrams, S.A., O’Brien, K.O., and Stuff, J.E., 1996, Changes in calcium kinetics associated with menarche, J. Clin. Endocrinol Metab. 81:2017–2020.CrossRefGoogle Scholar
  3. Abrams, S.A., Copeland, K.C., Gunn, S.K., Stuff, J.E., Clarke, L.L., and Ellis, K.J., 1999, Calcium absorption and kinetics are similar in 7- and 8-year-old Mexican-American and Caucasian girls despite hormonal differences, J. Nutr. 129: 666–671.Google Scholar
  4. Aubert, J.-P., Bronner, F., and Richelle, L. J., 1963, Quantitation of calcium metabolism theory, J. Clin. Invest. 42:885–897.CrossRefGoogle Scholar
  5. Bellin, J., and Laszlo, D., 1953, Metabolism and removal of Ca in man, Science 117:331–334.CrossRefGoogle Scholar
  6. Birge, S.J., Peck, W.A., Berman, M., and Whedon, G.D., 1969, Study of calcium absorption in man: a kinetic analysis and physiologic model, J. Clin. Invest. 48:1705–1713.CrossRefGoogle Scholar
  7. Blau, M., Spencer, H., Swemov, J., Greenberg, J., and Laszlo, D., 1957, Effect of intake level on the utilization and intestinal excretion of calcium in man, J. Nutr. 61:507–521.Google Scholar
  8. Boston, R.C., Greif, P., Wastney, M., and Linares, O., 1998, Balancing needs, efficiency and functionality in the provision of modeling software: a perspective of the NIH WinSAAM project, Adv. Exp. Med. Biol. 445:3–20.Google Scholar
  9. Bronner, F., and Abrams, S.A., 1998, Development and regulation of calcium metabolism in healthy girls, J. Nutr. 128:1474–1480.Google Scholar
  10. Charles, P., Taagehoj Jensen, F., Mosekilde, L., and Hvid Hansen, H., 1983, Calcium metabolism evaluated by 47Ca kinetics: estimation of dermal calcium loss, Clin. Sci. 65:415–422.Google Scholar
  11. Chestnut, C.H. III, 1988, Is osteoporosis a pediatric disease? Peak bone mass attainment in the adolescent female, Public Health Reports Suppl 50–54.Google Scholar
  12. Grundy, G.R., 1994, Boning up on genes, Nature 367:216–217.CrossRefGoogle Scholar
  13. Heaney, R.P., 1963, Evaluation and interpretation of calcium-kinetic data in man, Clin. Orthoped. 31:153–183.CrossRefGoogle Scholar
  14. Heaney, R.P., 2000, Calcium, dairy products and osteoporosis. J. Am. Coll. Nutr. 19: 83S–99S.Google Scholar
  15. Heaney, R.P., and Skillman, T.G., 1971, Calcium metabolism in normal human pregnancy, J. Clin. Endocrinol 33:661–670.CrossRefGoogle Scholar
  16. Heaney, R.P., and Recker, R.R., 1985, Estimation of true calcium absorption. Ann. Int. Med. 103:516–521.Google Scholar
  17. Jackman, L.A., Millane, S.S., Martin, B.R., Wood, O.B., McCabe, G.P., Peacock, M., and Weaver, CM., 1997, Calcium retention in relation to calcium intake and postmenarcheal age in adolescent females, Am. J. Clin. Nutr. 66:327–333.Google Scholar
  18. Johnston, C.C. Jr., Miller, J.Z., Slemenda, C.W., Reister, T.K., Hui, S., Christian, J.C., and Peacock, M., 1992, Calcium supplementation and increases in bone mineral density in children, N. Engl J. Med. 327:82–87.CrossRefGoogle Scholar
  19. Jung, A., Bartholdi, P., Mermillod, B., Reeve, J., and Neer, R., 1978, Critical analysis of methods for analysing human calcium kinetics, J. Theoret. Biol 73:131–157.CrossRefGoogle Scholar
  20. Lyne A., Boston, R., Pettigrew, K., and Zech, L., 1992, EMSA: a SAAM service for the estimation of population parameters based on model fits to identically replicated experiments, Comput. Methods Progr. Biomed. 38:117–151.CrossRefGoogle Scholar
  21. Matkovic, V., Kostial, K., Simonovic, I., Buzina, R., Brodarec, A., and Nordin, B.E.C., 1979, Bone status and fracture rates in two regions of Yugoslavia, Am. J. Clin. Nutr. 32:540–549.Google Scholar
  22. Matkovic, V., Fontana, D., Tominac, C, Goel, P., and Chesnut, C. H. III, 1990, Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females, Am. J. Clin. Nutr. 52:878–888. Google Scholar
  23. Neer R., Berman, M., Fisher, L., and Rosenberg, L.E., 1967, Multicompartmental analysis of calcium kinetics in normal adults males, J. Clin. Invest. 46:1364–1379.CrossRefGoogle Scholar
  24. Nieves, J.W., Golden, A.L., Siris, E., Kelsey, J.L., and Lindsay, R., 1995, Teenage and current calcium intake are related to bone mineral density of the hip and forearm in women aged 30–39 years, Am. J. Epidemiol. 141:342–351.CrossRefGoogle Scholar
  25. O’Brien, K.O., Abrams, S.A., Liang, L.K., Ellis, K.J., and Gagel, R.F., 1998, Bone turnover response to changes in calcium intake is altered in girls and adult women in families with histories of osteoporosis, J. Bone Min. Res. 13:491–499.CrossRefGoogle Scholar
  26. Phang, J.M., Berman, M., Finerman, G.A., Neer, R.M., Rosenberg, L.E., Hahn, T.J., Fisher, L., and Granger, A., 1969, Dietary perturbation of calcium metabolism in normal man: compartmental analysis, J. Clin. Invest. 48:67–77.CrossRefGoogle Scholar
  27. Sandler, R.B., Slemenda, C.W., LaPorte, R.E., Cauley, J.A., Schramm, M.M., Barresi, M.L., and Kriska, A.M., 1985, Postmenopausal bone density and milk consumption in childhood and adolescence, Am. J. Clin. Nutr. 42:270–274.Google Scholar
  28. Slemenda, C.W., Peacock, M, Hui, S., Zhao, L., and Johnston, C.C. Jr., 1997, Reduced rates of skeletal remodelling are associated with increased bone mineral density during the development of peak skeletal mass, J. BoneMin. Res. 12:676–682.CrossRefGoogle Scholar
  29. Smith, S.M., Nyquist, L.E., Shih, C.-Y., Wiesmann, H., Nillen, J.L., Wastney, M.E., and Lane, H.W., 1996, Calcium kinetics using microgram stable isotope doses and saliva sampling, J. Mass Spect. 31:1265– 1270.Google Scholar
  30. Smith, S.M., Wastney, M.E., Morukov, B.V., Larina, I.M., Nyquist, L.E., Abrams, S.A., Taran, E.N., Chih, C- Y., Nillen, J.L., Davis-Street, J.E., Rice, B.L., and Lane, H.W., 1999, Calcium metabolism before, during, and after a 3-month space flight: kinetic and biochemical changes, Am. J. Physiol. 46:R1–R10.Google Scholar
  31. Specker, B.L., Vieira, N.E., O’Brien, K.O., Ho, M.L., Heubi, J.E., Abrams, S.A., and Yergey, A.L., 1994, Calcium kinetics in lactating women with low and high calcium intakes, Am. J. Clin. Nutr. 59:593–599.Google Scholar
  32. Wastney, M.E., Ng, J., Smith, D., Martin, B.R., Peacock, M., and Weaver, C.M., 1996, Differences in calcium kinetics between adolescent girls and young women, Am. J. Physiol. 40:R208–R216.Google Scholar
  33. Wastney, M.E., Patterson, B.H., Linares, O.A., Greif, P.C., and Boston, R.C., 1999a, Starting modeling and developing a model, in: Investigating Biological Systems Using Modeling: Strategies and Software, p. 223–236, Academic Press, New York.Google Scholar
  34. Wastney, M.E., Patterson, B.H., Linares, O.A., Greif, P.C., and Boston, R.C., 1999b, Multiple studies, in: Investigating Biological Systems Using Modeling: Strategies and Software, p. 257–274, Academic Press, New York.Google Scholar
  35. Wastney, M.E., Martin, B.R., Ng, J., Peacock, M., Smith, D., Jiang, X-Y., and Weaver, CM., 2000, Changes in calcium kinetics in adolescent girls induced by high calcium intake, J. Clin. Endocrinol. Metab. 85:4470– 4475.Google Scholar
  36. Weaver, CM., Martin, B.R., Plawecki, K.L., Peacock, M., Wood, O.B., Smith, D.L., and Wastney, M.E., 1995, Differences in calcium metabolism between adolescent and adult females, Am. J. Clin. Nutr. 61:577–581.Google Scholar
  37. Weiss, G.H., Goans, R.E., Gitterman, M., Abrams, S.A., Vieira, N.E., and Yergey, A.L., 1994, A non- Markovian model for calcium kinetics in the body, J. Pharm. Biopharm. 22:367–379.Google Scholar
  38. Yergey, A.L., Abrams, S.A., Vieira, N.E., Aldroubi, A., Marini, J., and Sidbury, J.B., 1994, Determination of fractional absorption of dietary calcium in humans, J. Nutr. 124:674–682.Google Scholar
  39. Yergey, A.L., Abrams, S.A., Vieira, N.E., Eastell, R., Hillman, L.S., and Covell, D.G., 1990, Recent studies of human calcium metabolism using stable isotopic tracers, Can. J. Physiol Pharmacol. 68:973–976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Meryl E. Wastney
    • 1
  • Berdine R. Martin
    • 2
  • Rebecca J. Bryant
    • 2
  • Connie M. Weaver
    • 2
  1. 1.Metabolic Modeling Services, LtdDalesford, HamiltonNew Zealand
  2. 2.Department of Food and NutritionPurdue UniversityWest Lafayette

Personalised recommendations