Elemental Mass Spectrometry for Compartmental Biological Modeling

  • Assad Al-Ammar
  • Ramon M. Barnes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 537)


Elemental/inorganic mass spectrometry is a valuable and appealing technique to obtain stable isotope data for compartmental modeling of biological processes. “Biological processes” encompass biochemical reactions, enzyme kinetics, nutrient metabolism, drug metabolism, and mineral and trace element metabolism. The complexity of these biological processes requires special techniques for their characteri-zation. Mathematical simulation by compartmental modeling is the computational concept that is most widely used to systemize biological processes, and stable isotope analysis by plasma source mass spectrometry (PSMS) has become a reliable and versatile means to provide data for these models (Barnes, 1996, 1998a, b; Becker and Dietz, 1998; Vanhaecke et al., 1999a; Becker and Dietz, 2000). Effective PSMS systems shorten analysis time, extend element isotope coverage, and enhance detection sensitivity, precision, and accuracy. Some noteworthy applications combining compartmental modeling with stable isotope/inorganic mass spectrometry to study trace metal metabo-lism, drug and nutrient metabolism, and biokinetics are described here.


Stable Isotope Isotope Ratio Inductively Couple Plasma Mass Spectrometry Inductively Couple Plasma Inductively Couple Plasma Mass Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, R.M., 1996, Analytical plasma source mass spectrometry in biomedical researchFresenius J. Anal. Chem.355:433–441.Google Scholar
  2. Barnes, R.M., 1998a, Capillary electrophoresis and inductively coupled plasma mass spectrometry: status reportFresenius J. Anal. Chem.361:246–251.CrossRefGoogle Scholar
  3. Barnes, R.M., 1998b, Plasma source mass spectrometry in experimental nutrition, in:Mathematical Modeling in Experimental NutritionA.J. Clifford and H.-J. Müller, eds., Plenum Press, New York.Google Scholar
  4. Becker, J.S., and Dietze, H.-J., 1998, Ultratrace and precise isotope analysis by double-focusing sector field inductively coupled plasma mass spectrometryJ. Anal. Atomic Spectrom. 13:1057–1063.CrossRefGoogle Scholar
  5. Becker, J.S., and Dietze, H.-J., 2000, Precise and accurate isotope ratio measurements by ICP-MS, FreseniusJ. Anal. Chem.368:23–30.CrossRefGoogle Scholar
  6. Bonnel, E., Woodhouse, L., Shames, D., Lowe, N., Jackson, M.J., Turnlund, J., and King, J.C., 1999, Effect of acute zinc depletion on a compartmental analysis of zinc kineticsFASEB J.13:A569.Google Scholar
  7. Buckley, W., Vanderpool, R., Godfrey, D., and Johnson, P.E., 1996, Determination, stable isotope enrichment and kinetics of direct-reacting copper in blood plasmaJ. Nutr. Biochem.7:488–494.CrossRefGoogle Scholar
  8. Cantone, M.C., deBartolo, D., Giussani, A., Ottolenghi, A., Pirola, L., Hansen, Ch., Roth, P., and Werner, E., 1997, A methodology for biokinetic studies using stable isotopes: results of repeated molybdenum investigation on a healthy volunteerAppl. Radial Isotopes48:333–338.CrossRefGoogle Scholar
  9. Coudray, C, and Fairweather-Tait, S.J., 1998, Do oligosaccharides affect the intestinal absorption of calcium in humans?Am. J. Clin. Nutr.68:921–922.Google Scholar
  10. Crews, H.M., Ducros, V., Eagles, J., Mellon, F.A., Kastenmayer, P., Luten, J.B., and Macgaw, B.A., 1994, Mass-spectrometric methods for studying nutrient mineral and trace-elements absorption and metabolism in humans using stable isotopes-a reviewAnalyst119:2491–2514.CrossRefGoogle Scholar
  11. Crews, H.M., 1998, Speciation of trace elements in foods, with special reference to cadmium and selenium: is it necessary?Spectrochim. Acta Part B53:213–219.CrossRefGoogle Scholar
  12. Denoyer, E., Tanner, S.D., and Voellkopf, V., 1999, A new dynamic reaction cell for reducing ICP-MS interferences using chemical resolutionSpectroscopy14:43–45.Google Scholar
  13. Dombrovári, J., Becker, J.S., and Dietze, H.-J., 2000, Isotope ratio measurements of magnesium and determination of magnesium concentration by reverse isotope dilution technique on small amounts of26Mg-spiked nutrient solutions with inductively coupled plasma mass spectrometryInt. J. Mass Spec.202:231–240.CrossRefGoogle Scholar
  14. Eagles, J., Fairweather-Tait, S., Mellon, F., Teucher, B., Meffan-Main, S., and Thirlwall, M., 2000, Accuracy and precision of multi-collector ICP-MS calcium isotope ratio measurement in human metabolic studies10 th Biennial National Atomic Spectroscopy SymposiumSheffield.Google Scholar
  15. Encinar, J.R., Garcia Alonso, J.I., and Sanz-Medel, A., 2000, Synthesis and application of isotopically labeled dibutyltin for isotope dilution analysis using gas chromatography-ICP-MSJ. Anal. Atomic Spectrom.15:1233–1239.CrossRefGoogle Scholar
  16. Fairweather-Tait, S.J., Minihane, A.M., Eagles, J., Owen, L., and Crews, H.M., 1997, Rare earth elements as nonabsorbable fecal markers in studies of iron absorptionAm. J. Clin. Nutr.65:970–976.Google Scholar
  17. Giussani, A., Cantone, M.C., deBartolo, D., Roth, P., and Werner, E., 2000, Internal dose for ingestion of molybdenum radionuclides based on a revised biokinetic modelHealth Phys.78:46–52.CrossRefGoogle Scholar
  18. Griffin, I., Shames, D., King, J.C., and Abrams, S., 1999a, A compartmental model of zinc kinetics in childrenJ. Invest. Med.47:134A.Google Scholar
  19. Griffin, I., Shames, D.M., King, J.C., and Abrams, S., 1999b, A multi-compartmental zinc kinetic model in childrenFASEB J.13:A214.Google Scholar
  20. Halliday, A.N., Lee, D., Christensen, J., Walder, A., Freedman, P., Jones, C, Hall, C, Yi, W., and Teagle, D., 1995, Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry, Int. J. Mass Spec. Ion Proc. 146/147:21–33.CrossRefGoogle Scholar
  21. Hambidge, K., Krebs, N.F., and Miller, L.V., 1998, Development of compartmental model to fit zinc stable isotope tracer dataFASEB J.12:A345.Google Scholar
  22. Heumann, K.G., Gallus, S.M., Radlinger, G., and Vogl, J., 1998, Precision and accuracy in isotope ratio measurements by plasma source mass spectrometryJ. Anal. Atomic Spectrom.13:1001–1008.CrossRefGoogle Scholar
  23. Hill, S.J., ed., 1999Inductively Coupled Plasma Spectrometry and Its ApplicationSheffield Academic Press, Sheffield.Google Scholar
  24. Koch, G.M., Kerr, B.M., and Gooding, A., 1996a, Pharmacokinetics of bismuth and ranitidine following multiple doses of ranitidine bismuth citrateBrit. J. Clin. Pharamcol.42:207–211.CrossRefGoogle Scholar
  25. Koch, K.M., Kerr, B.M., and Gooding, A., 1996b, Pharmacokinetics of bismuth and ranitidine following single doses of ranitidine bismuth citrateBrit. J. Clin. Pharmacol.42:201–205.CrossRefGoogle Scholar
  26. Kopp-Hoolihan, L., Van Loan, M., Wong, W.W., and King, J.C., 1999, Fat mass deposition during pregnancy using a four-component model, J. Appl. Physiol. 87:196–202.Google Scholar
  27. Krebs, N.F., Westcott, J., and Miller, L.V., 1999, Localization of secretion and reabsorption of endogenous zinc by compartmental modeling of intestinal dataFASEB J.13:A214.Google Scholar
  28. Lowe, N.M., Shames, D., Woodhouse, L., Matel, J., Roehl, R., Saccomani, M., Toffolo, G., Cobelli, C, and King, J.C., 1997, A compartmental model of zinc in healthy women using oral and intravenous stable isotope tracersAm. J. Clin. Nutr.65:1810–1819.Google Scholar
  29. Lowe, N.M., Woodhouse, L.R., Matel, J.S., and King, J.C., 2000, Comparison of estimates of zinc absorption in humans by using 4 stable isotopic tracer methods and compartmental analysisAm. J. Clin. Nutr.71:523–529.Google Scholar
  30. Lu, Q., Bird, S.M., and Barnes, R.M., 1995, Interface for capillary electrophoresis and inductively coupled plasma mass spectrometryAnal. Chem.67:2949–2956.CrossRefGoogle Scholar
  31. Lu, Q., and Barnes, R.M., 1996, Evaluation of an ultrasonic nebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometryMicrochem. J.54:129–143.CrossRefGoogle Scholar
  32. Lund, E.K., Wharf, S.G., Fairweather-Tait, S.J., and Johnson, I.T., 1998, Increases in the concentrations of available iron in response to dietary iron supplementation are associated with changes in crypt cell proliferation in rat large intestineJ. Nutr.128:175–179.Google Scholar
  33. Marechal, C.N., Telouk, P., and Albarede, F., 1999, Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometryChem. Geoi156:251–273.CrossRefGoogle Scholar
  34. Mellon, F.A., and Sandström, B., eds., 1996Stable Isotopes in Human Nutrition: Inorganic Nutrient MetabolismAcademic Press, London.Google Scholar
  35. Menegário, A.A., Giné, M.F., Bendassolli, J.A., Bellato, A.C.S., and Trivelin, P.C.O., 1998, Sulfur isotope ratio (34S:32S) measurements in plant materials by inductively coupled plasma mass spectrometryJ. Anal. Atomic Spectrom.13:1065–1067.CrossRefGoogle Scholar
  36. Miller, L.V., Krebs, N.F., Jefferson, M., Easley, D., and Hambidge, K., 1996, Modeling of human zinc metabolism: model development using multiple stable isotopesFASEB J.10:1117.Google Scholar
  37. Miller, L.V., Krebs, N.F., and Hambidge, K., 1998, Human zinc metabolism: advances in the modeling of stable isotope data, in:Mathematical Modeling in Experimental NutritionA.J. Clifford and H.-J. Müller, eds., Plenum Press, New York.Google Scholar
  38. Minihane, A.M., and Fairweather-Tait, S.J., 1998, Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron statusAm. J. Clin. Nutr.68:96–102.Google Scholar
  39. Montaser, A., ed., 1998Inductively Coupled Plasma Mass SpectrometryWiley-VCH, New York.Google Scholar
  40. Patriarca, M., Lyon, T.D., and Fell, G.S., 1997, Nickel metabolism in humans investigated with oral stable isotopeAm. J. Clin. Nutr.66:616–621.Google Scholar
  41. Platzner, I.T., 1997Modern Isotope Ratio Mass SpectrometryWiley, New York.Google Scholar
  42. Serfass, R., Fang, Y.Y., and Wastney, M.E., 1996, Zinc kinetics in weaned piglets fed marginal zinc intake: compartmental analysis of stable isotope dataJ. Trace Elements Exp.Med. 9:73–86.CrossRefGoogle Scholar
  43. Smith, D.R., Woolard, D., and Luck, M.L., 2000a, Succimer and the reduction of tissue lead in juvenile monkeysToxicol. Appl. Pharmacol. 166:230–240.CrossRefGoogle Scholar
  44. Smith, D.R., Calacsan, C, Luck, M., Cremin, J., and Laughlin, N.K., 2000b, Succimer and the urinary excretion of essential elements in a primate model of childhood lead exposureToxicol. Sci.54:473–480.CrossRefGoogle Scholar
  45. Stürup, S., 2000, Application of HR-ICP-MS for the simultaneous measurement of zinc isotope ratios and total zinc content in human samplesJ. Anal. Atomic Spectrom.15:315–321.CrossRefGoogle Scholar
  46. Tanner, S.D., and Baranov, V.I., 1999, Theory, design and operation of a dynamic reaction cell for ICP-MSAt. Spectrosc.20:45–52.Google Scholar
  47. Turner, P.J., Mills, D.J., Schroder, E., Lapitaja, G., Jung, G., Iacone, L.A., Haydar, D.A., and Montaser, A., 1998, Instrumentation for low-and high-resolution ICPMS, in:Inductively Coupled Plasma Mass SpectrometryA. Montaser, ed., Wiley-VCH, New York.Google Scholar
  48. Vanhaecke, F., Moens, L., Dames, R., Papadakis, I., and Taylor, P., 1997, Applicability of high-resolution ICP- mass spectrometry for isotope ratio measurementsAnal. Chem.69:268–273.CrossRefGoogle Scholar
  49. Vanhaecke, F., Moens, L., and Taylor, P., 1999a, Use of ICP-MS for isotope ratio measurements, in:Inductively Coupled Plasma Spectrometry and Its ApplicationS.J. Hill, ed., Sheffield Academic Press, Sheffield.Google Scholar
  50. Vanhaecke, F., Moens, L., Dames, R., Allen, L., and Georgitis, S., 1999b, Evaluation of the isotope ratio performance of an axial time-of-flight ICP mass spectrometerAnal. Chem.71:3297–3303.CrossRefGoogle Scholar
  51. Wastney, M.E., Aamodt, R.L., Rumble, W., and Henkin, R., 1986, Kinetic analysis of zinc metabolism and its regulation in normal humansAm. J. Physiol.251:R398–R408.Google Scholar
  52. Wastney, M.E., Angelus, P., Barnes, R.M., and Subramanian, K.N., Zinc kinetics in preterm infants: a compartmental model based on stable isotope data, 1996Am. J. Physiol.40:R1452–R1459.Google Scholar
  53. Wastney, M., Patterson, B., Linares, O., Greif, P., and Boston, R., 1999, Investigating Biological Systems Using Modeling: Strategies and Software Academic Press, New York.Google Scholar
  54. Wastney, M.E., House, W.A., Barnes, R.M., and Subramanian, K.N., 2000, Kinetics of zinc metabolism: variation with diet, genetics and diseaseJ. Nutr.130:1355S–1359S.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Assad Al-Ammar
    • 1
  • Ramon M. Barnes
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of MassachusettsAmherst
  2. 2.University Research Institute for Analytical ChemistryAmherst
  3. 3.University Research Institute for Analytical ChemistryHadley

Personalised recommendations