Advertisement

Mass Customization: Framework and Methodologies

  • Charu Chandra
  • Jānis Grabis

Abstract

This Chapter places mass custornization in the wider perspective of visionary evolution of manufacturing systems. Reconfigurable products and processes that enable adapting to changing market conditions are central to advanced manufacturing systems, including implementation of mass custornization. Trans-organizational character of modem manufacturing systems calls for analyzing reconfiguration issues from the supply chain perspective. Problem-solving approaches for managing reconfigurable supply chains are discussed. A decision support system integrating the information support system and the decision modeling system is proposed.

Keywords

onfigurable system supply chain reconfiguration decision support system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldanondo M., Hadj-Hamou K., Moynard G., Lamothe J. Mass customization and configuration: Requirement analysis and constraint based modeling propositions. Integrated Computer-Aided Engineering 2003; 10: 177.Google Scholar
  2. 2.
    Alfnes E., Strandhagen J. O. Enterprise Design for Mass Customisation: The Control Model Methodology. International Journal of Logistics: Research and Applications 2000; 3: 111–125.CrossRefGoogle Scholar
  3. 3.
    Alford D., Sackett P., Neider G. Mass customisation — an automotive perspective. International Journal of Production Economics 2000; 65: 99–110.CrossRefGoogle Scholar
  4. 4.
    Ballou R. H. Unresolved issues in supply chain network design. Information Systems Frontiers 2001; 3: 417–426.CrossRefGoogle Scholar
  5. 5.
    Blanchard S. B., Fabrycky W.J., Systems Engineering and Analysis. New Jersey: Prentice Hall, 1990.Google Scholar
  6. 6.
    Chandra C. Enterprise architectural framework for supply-chain integration. Proceedings of the 6th Annual Industrial Engineering Research Conference, May 17-18, Miami Beach, Florida, 1997; 873–878.Google Scholar
  7. 7.
    Chandra C., Chilov N. Object-Oriented Data Model for Supply Chain Configuration Management. Proceedings: Tenth Annual Industrial Engineering Research Conference (IERC), May 20-22, Dallas, Texas, 2001.Google Scholar
  8. 8.
    Chandra C., Grabis J. Modeling Floating Supply Chains. Proceedings: Eleventh Annual Industrial Engineering Research Conference (IERC), May 19-22, Orlando, Florida, 2002.Google Scholar
  9. 9.
    Chandra C., Grabis J. Impact of supply lead time on supplier selection: An operational perspective. Proceedings: Twelfth Annual Industrial Engineering Research Conference (IERC), May 18-20, Portland, Oregon, 2003.Google Scholar
  10. 10.
    Chandra C., Marukyan R. Elaborating Process Models for Supply Chain Reconfiguration. Proceedings: Eleventh Annual Industrial Engineering Research Conference (IERC), May 19-22, Orlando, Florida, 2002.Google Scholar
  11. 11.
    Chandra C., Nastasi A. J., Norris T. L., Tag P. Enterprise Modeling for Capacity Management in Supply Chain Simulation. Proceedings: Ninth Industrial Engineering Research Conference (IERC), May 21-24, Cleveland, Ohio, 2000.Google Scholar
  12. 12.
    Chandra C., Tumanyan A. Supply Chain Reconfiguration: Designing Information Support with System Taxonomy Principles. Proceedings: Eleventh Annual Industrial Engineering Research Conference (IERC), May 19-22, Orlando, Florida, 2002.Google Scholar
  13. 13.
    Clark A. J. An informal survey of multi-echelon inventory theory. Naval Research Logistics Quarterly 1972; 19: 621–650.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Clark A. J., Scarf H. Optimal policies for multi-echelon inventory problem. Management Science 1960; 6: 475–490.CrossRefGoogle Scholar
  15. 15.
    Cohen M. A., Lee H. L. Strategic Analysis of Integrated Production-Distribution System. Operations Research 1988; 36: 216.CrossRefGoogle Scholar
  16. 16.
    Cohen M. A., Lee H. L. Resource deployment analysis of global manufacturing and distribution networks. Journal of Manufacturing Operations Management 1989; 2: 81–104.Google Scholar
  17. 17.
    Contractor F. J., Lorange P. The growth of alliances in knowledge-based economy. International Business Review 2002; 11: 485–502.CrossRefGoogle Scholar
  18. 18.
    Da Silveira G., Borenstein D., Fogliatto F. Mass customization: Literature review and research directions. International Journal of Production Economics 2001; 72: 1–13.CrossRefGoogle Scholar
  19. 19.
    Deleersnyder J. L., Hodgson T. J., King R E., O’Grady P. J., Savva A. Integrating kanban type pull systems and MRP type push systems: insights from a Markovian model. IIE Transactions 1992; 24: 43–56.CrossRefGoogle Scholar
  20. 20.
    Diks E. B., De Kok A. G. Optimal control of a divergent multi-echelon inventory system. European Journal of Operational Research 1997.Google Scholar
  21. 21.
    Diks E. B., De Kok A. G. Computational results for the control of a divergent N-echelon inventory system. International Journal of production economics 1998.Google Scholar
  22. 22.
    Diks E. B., De Kok A. G., Lagodimos A. G. Multi-echelon systems: a service measure perspective. European Journal of Operational Research 1996; 95: 241–263.CrossRefzbMATHGoogle Scholar
  23. 23.
    Drew S. A. A. The application of hierarchical control methods to a managerial problem. International Journal of Systems Science 1975; 6: 371–395.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Eastwood M. A. Implementing mass customization. Computers in Industry 1996; 30: 171–174.CrossRefGoogle Scholar
  25. 25.
    Fleischanderl G., G. F., A. H., H. S., M. S. Configuring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems and their application 1998; 1: 59–68.CrossRefGoogle Scholar
  26. 26.
    Fowler S. W., King A. W., Marsh S. J., Victor B. Beyond products: new strategic imperatives for developing competencies in dynamic environments. Journal of Engineering and Technology Management 2000; 17: 357–377.CrossRefGoogle Scholar
  27. 27.
    Fujita K. Product variety optimization under modular architecture. Computer-Aided Design 2002; 34: 953–965.CrossRefGoogle Scholar
  28. 28.
    Fulkerson F. A response to dynamic change in the market place. Decision Support Systems 1997; 21: 199–214.CrossRefGoogle Scholar
  29. 29.
    Furst K., Schmidt T. Turbulent markets need flexible supply chain communication. Production Planning & Control 2001; 12: 525–533.CrossRefGoogle Scholar
  30. 30.
    Graves S. C. Using Lagrangean techniques to solve hierarchical production planning problems. Management Science 1982; 28: 260–275.CrossRefzbMATHGoogle Scholar
  31. 31.
    Griffiths J., Margetts D. Variation in production schedules — implications for both the company and its suppliers. Journal of Materials Processing Technology 2000; 103: 155–159.CrossRefGoogle Scholar
  32. 32.
    Grober T. Toward principles for the Design of Ontologies Used for Knowledge Sharing. International Journal of Human and Computer Studies 1995; 43: 907–928.CrossRefGoogle Scholar
  33. 33.
    Groninger M., Integrated Ontologies for Enterprise Modelling. In Enterprise Engineering and Integration. Building International Consensus, K. Kosanke and J. Nel, ed. Springer, 1997; 368–377.Google Scholar
  34. 34.
    Gu X. J., Qi G. N., Yang Z. X., Zheng G. J. Research of the optimization methods for mass customization (MC). Journal of Materials Processing Technology 2002; 129: 507–512.CrossRefGoogle Scholar
  35. 35.
    Gunasekaran A., Goyal S. K., Martikainen T., YIi-Olli P. A conceptual framework for the implementation of zero inventory and just in time manufacturing concepts. Human Factors and Ergonomics in Manufacturing 1998; 8: 63–78.CrossRefGoogle Scholar
  36. 36.
    Gupta S., Loulou R. Process Innovation, Product Differentiation, and Channel Structure: Strategic Incentives in a Duopoly. Marketing Science 1998; 17.Google Scholar
  37. 37.
    Hackman S. T., Leachman R C. A general framework for modeling production. Management Science 1989; 35: 478–495.CrossRefGoogle Scholar
  38. 38.
    Hariharan R., Zipkin P. Customer-order information, leadtimes, and inventories. Management Science 1995; 41: 1599–1607.CrossRefzbMATHGoogle Scholar
  39. 39.
    He Q.-M., Jewkes E. M. Performance measures of a make-to-order inventory-production system. IIE Transactions 2000; 32: 409–419.Google Scholar
  40. 40.
    Hirsch B. Information System Concept for the Management of Distributed Production. Computers in Industry 1995; 26: 229–241.CrossRefGoogle Scholar
  41. 41.
    Hirschhorn L., Noble P., Rankin T. Sociotechnical systems in an age of mass customization. Journal of Engineering and Technology Management 2001; 18:241–252.CrossRefGoogle Scholar
  42. 42.
    IMTR. Technologies for Enterprise Integration, Rev 3.1. Integrated Manufacturing Technology Roadmapping Project, Oak Ridge Centers for Manufacturing Technology, Oak Ridge, Tennessee.Google Scholar
  43. 43.
    ISO TC 184/SC 5/WG 1. Requirements for enterprise reference architectures and methodologies. http://www.mel.nist.gov/sc5wg1/gera-std/ger-anxs.html, 1997.Google Scholar
  44. 44.
    Jennings R., Cooperation in Industrial Multi-agent Systems. World Scientific Series in Computer Science 43. World Scientific Publishing Co., 1994.Google Scholar
  45. 45.
    Jiao J., Tseng M. M. CustomizabiIity analysis in design for mass customization. Computer-Aided Design, 2004, In press.Google Scholar
  46. 46.
    Joneja A., Lee N. A modular, parametric virbratory feeder: A case study for flexible assembly tools for mass customization. IIE Transactions 1998; 30: 923–931.Google Scholar
  47. 47.
    Karsak E. E., Kuzgunkaya O. A fuzzy multiple objective programming approach for the selection of flexible manufacturing system. International Journal of Production Economics 2002; 79: 101–111.CrossRefGoogle Scholar
  48. 48.
    Kim J. Hierarchical structure of intranet functions and their relative importance: using the analytic hierarchy process for virtual organization. Decision Support Systems 1998; 23: 59–74.CrossRefGoogle Scholar
  49. 49.
    Klir G. J., Facets of Systems Science. New York: Plenum Press, 1991.Google Scholar
  50. 50.
    Kotha S. From Mass Production to Mass Customization: The Case of the National Industrial Bicycle Company of Japan. European Management Journal 1996; 14: 442–450.CrossRefGoogle Scholar
  51. 51.
    Lee H. L. Effective inventory and service management through product and process redesign. Operations Research 1996; 44: 151–159.CrossRefzbMATHGoogle Scholar
  52. 52.
    Lee H. L., Billington C. Material management in decentralized supply chains. Operations Research 1993; 41: 835–847.CrossRefzbMATHGoogle Scholar
  53. 53.
    Little J. D. C. Tautologies, Models and Theories: Can We Find “Laws” of Manufacturing? IIE Transactions 1992; 24: 7–13.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Ma S., Wang W., Liu L. Commonality and postponement in multistage assembly systems. European Journal of Operational Research 2002; 142: 523–538.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Malone T. W. Modeling coordination in organizations and markets. Management Science 1987; 33: 1317–1332.CrossRefGoogle Scholar
  56. 56.
    Malone T. W., Crowston K. The interdisciplinary study of coordination. ACM Computing Surveys 1994; 26: 87–119.CrossRefGoogle Scholar
  57. 57.
    Masahiko A., The Co-operative Game Theory of the Firm. Oxford: Oxford University Press, 1984.Google Scholar
  58. 58.
    Morris W. T. On the art of modeling. Management Science 1967; 13: B707–B717.CrossRefGoogle Scholar
  59. 59.
    NIST. Manufacturing Enterprise Integration Program. National Institute of Standards and Technology: Gaithersburg, 1999.Google Scholar
  60. 60.
    National Research Council. Visionary Manufacturing Challenges for 2020, Committee on Visionary Manufacturing Challenges, National Academy Press: Washington D.C., 1998.Google Scholar
  61. 61.
    Pritsker A. A. B. Modeling in performance-enhancing processes. Operations Research 1997; 45: 797–804.CrossRefzbMATHGoogle Scholar
  62. 62.
    Pyke D. F., Cohen M. A. Push and pull in manufacturing and distribution systems. Journal of Operations Management 1990; 9: 24–43.CrossRefGoogle Scholar
  63. 63.
    Roy U., Kodkani S. S. Product modeling within the framework of the World Wide Web. IIE Transactions (Institute of Industrial Engineers) 1999; 31: 667–677.Google Scholar
  64. 64.
    Salvador F., Forza C., Rungtusanatham M. Modularity, product variety, production volume, and component sourcing: theorizing beyond generic prescriptions. Journal of Operations Management 2002a; 20: 549–575.CrossRefGoogle Scholar
  65. 65.
    Salvador F., Forza C., Rungtusanatham M. How to mass customize: Product architectures, sourcing configurations. Business Horizons 2002b; 45: 61–69.CrossRefGoogle Scholar
  66. 66.
    Shaw M. J., Solberg J. J., Woo T. C. System integration in intelligent manufacturing: an introduction. IIE Transactions 1992; 24: 2–6.CrossRefGoogle Scholar
  67. 67.
    Sousa P., Heikkila T., Kollingbaum M., Valckenaers P. Aspects of co-operation in Distributed Manufacturing Systems. Proceedings of the Second International Workshop on Intelligent Manufacturing Systems, 1999; 685–717.Google Scholar
  68. 68.
    Stumptner M. An overview of knowledge-based configuration. AI Communications 1997 10: 111–125.Google Scholar
  69. 69.
    Svensson C., Barfod A. Limits and opportunities in mass customization for “build to order” SMEs. Computers and Industry 2002; 49: 77–89.CrossRefGoogle Scholar
  70. 70.
    Swaminathan J. M., Smith S. F., Sadeh N. M. Modeling supply chain dynamics: A multiagent approach. Decision Sciences 1998; 29: 607.CrossRefGoogle Scholar
  71. 71.
    Thomas D. J., Griffin P. M. Coordinated supply chain management. European Journal of Operational Research 1996; 94: 1–15.CrossRefzbMATHGoogle Scholar
  72. 72.
    Tseng M. M., Jiao J. Case-based evolutionary design for mass customization. Computers and Industrial Engineering 1997; 33: 319–323.CrossRefGoogle Scholar
  73. 73.
    Tseng M. M., Jiao J., Su C. J. Virtual prototyping for customized product development. Integrated Manufacturing Systems 1998; 9: 334–343.CrossRefGoogle Scholar
  74. 74.
    Turowski K. Agent-based e-commerce in case of mass customization. International Journal of Production Economics 2002; 75: 69–81.CrossRefGoogle Scholar
  75. 75.
    Twede D., Clarke R. H., Tait J. A. Packaging postponement: A global packaging strategy. Packaging Technology and Science 2000; 13: 105–115.CrossRefGoogle Scholar
  76. 76.
    Tzafestas S., Kapsiotis G. Coordinated control of manufacturing/supply chains using multi-level techniques. Computer Integrated Manufacturing Systems 1994; 7: 206–212.CrossRefGoogle Scholar
  77. 77.
    Weng K. K. Strategies for integrating lead time and customer-order decisions. IIE Transactions 1999; 31: 161–171.CrossRefGoogle Scholar
  78. 78.
    Whang S. Coordination in operations: a taxonomy. Journal of Operations Management 1995; 12: 413–422.CrossRefGoogle Scholar
  79. 79.
    Wooldridge M., Jennings N. R. Intelligent agents: theory and practice. The Knowledge Engineering Review 1995; 10: 115–152.CrossRefGoogle Scholar
  80. 80.
    Worren N., Moore K., Cardona P. Modularity, strategic flexibility, and firm performance: A study of the home appliance industry. Strategic Management Journal, 2004, In pressGoogle Scholar
  81. 81.
    Yao A. C., Carlson J. G. H. Agility and mixed-model furniture production. International Journal of Production Economics 2003; 81–82: 95–102.CrossRefGoogle Scholar
  82. 82.
    Younis M. A., Mahmoud M. S. Optimal inventory for unpredicted production capacity and raw material supply. Large Scale Systems 1986; 11: 1–17.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Charu Chandra
    • 1
  • Jānis Grabis
    • 2
  1. 1.University of Michigan-DearbornUSA
  2. 2.Riga Technical UniversityLatvia

Personalised recommendations