Endothelial Cell Biology: Inflammatory Biomarkers and Risk of Transplant Atherosclerosis

  • Carlos A. Labarrere
  • Beate R. Jaeger


During the past decade, major improvement in our understanding of the mechanisms for the development of atherosclerotic lesions has emerged. Inflammatory mechanisms seem to play a paramount role in the development of both the spontaneous as well the transplant associated forms of the disease1-18. The importance of inflammatory markers as predictors of spontaneous atherosclerosis has been clearly demonstrated by several publications in the recent years’-6Circulating plasma levels of markers of vascular inflammation seem to help with the identification of people at high risk for future cardiovascular events. The same seems to be the case for patients at risk of developing transplant atherosclerosis. Patients at risk for development of the disease also show a persistent elevation of biomarkers of inflammation in blood early following the transplant procedure’18.The present chapter will focus on the causative role of inflammation in the development of transplant atherosclerosis, the relationship between inflammation and procoagulation in the allograft microvasculature and how these changes relate to subsequent atherosclerosis, and the introduction of new therapies in order to delay or prevent the development of the disease and prolong transplant survival.


Plasminogen Activator Tissue Plasminogen Activator Cardiac Allograft Tissue Factor Expression Cardiac Allograft Vasculopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berk, B.C., W.S. Weintraub, and R.W. Alexander (1990). Elevation of C-reactive protein in “active” coronary artery disease. Am.J. Cardin’.65, 168–172.CrossRefGoogle Scholar
  2. 2.
    Liuzzo, G., L.M. Biasucci, J.R. Gallimore, R.L. Grillo, A.G. Rebuzzi, M.B. Pepys, and A. Maseri (1994). The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina.N. Engl. J. Med. 331417–424.PubMedCrossRefGoogle Scholar
  3. 3.
    Thompson, S.G., J. Kienast, S.D.M. Pyke, F. Haverkate, and J.C.W. van de Loo (1995). Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris.N. Engl. J. Med. 332635–641.PubMedCrossRefGoogle Scholar
  4. 4.
    Kuller, L.H., R.P. Tracy, J. Shaten, and E.N. Meilahn (1996). Relation of C-reactive protein and coronary heart-disease in the MRFIT nested case-control study. Am.J. Epidemiol. 144537–547.PubMedCrossRefGoogle Scholar
  5. 5.
    Tracy, R.P., R.N. Lemaitre, B.M. Psaty, D.G. Ives, R.W. Evans, M. Cushman, E.N. Meilahn, and L.H. Kuller (1997), Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the cardiovascular health study and the rural health promotion project.Arteriosol Thromb Vasc Biol 171121–1127.CrossRefGoogle Scholar
  6. 6.
    Haverkate, F., S.G. Thompson, S.D.M. Pyke, J.R. Gallimore, and M.B. Pepys (1997). Production of C-reactive protein and risk of coronary events in stable and unstable angina.Lancet 349462–466.PubMedCrossRefGoogle Scholar
  7. 7.
    Ridker, P.M., M. Cushman, M.J. Stampfer, R.P. Tracy, and C.H. Hennekens (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.N. Engl. J. Med. 336973–979.PubMedCrossRefGoogle Scholar
  8. 8.
    Koenig, W., M. Sund, M. Frohlich, H.G. Fischer, H. Lowel, A. Doring, W.L. Hutchinson, and M.B. Pepys (1999). C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring trends and determinants in cardiovascular disease) Augsburg Cohort Study, 1984 to 1992.Circulation 99237–242.PubMedCrossRefGoogle Scholar
  9. 9.
    Danesh, J., P. Whincup, M. Walker, L. Lennon, A. Thomson, P. Appleby, J.R. Gallimore, and M.B. Pepys (2000). Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses.BMJ 321199–204.PubMedCrossRefGoogle Scholar
  10. 10.
    Danesh, J., R. Collins, P. Appleby, and R. Peto (1998). Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease. Meta-analyses of prospective studies.JAMA 2791477–1482.PubMedCrossRefGoogle Scholar
  11. 11.
    Ridker, P.M., C.H. Hennekens, J.E. Buring, and N. Rifai (2000). C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.N. Engl. J. Med. 342836–843.PubMedCrossRefGoogle Scholar
  12. 12.
    Danesh, J., J. Muir, Y.-K. Wong, M. Ward, J.R. Gallimore, and M.B. Pepys (1999). Risk factors for coronary heart disease and acute-phase proteins. A population-based study.Eur. Heart J. 20954–959.PubMedCrossRefGoogle Scholar
  13. 13.
    Blake, G.J. and P.M. Ridker (2002). Inflammatory bio-markers and cardiovascular risk prediction.J. Intern. Med. 252283–294.PubMedCrossRefGoogle Scholar
  14. 14.
    Jackson, E., P.J. Skerrett, and P.M. Ridker (2001). Epidemiology of arterial thrombosis. In R.W. Colman, J. Hirsh, V.J. Marder, A.W. Clowes, and J.N. George (ed.)Hemostasis and Thrombosis. Basic Principles and Clinical Practice.Lippincott, Williams, and Wilkins, Philadelphia. pp. 1179–1196.Google Scholar
  15. 15.
    Ridker, P.M., C.H. Hennekens, B. Roitman-Johnson, M.J. Stampfer, and J. Allen (1998). Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men.Lancet 35188–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Rader, D.J. (2000). Inflammatory markers of coronary risk.N. Engl. J. Med. 3431179–1182.PubMedCrossRefGoogle Scholar
  17. 17.
    Labarrere, C.A., D.R. Nelson, S.J. Miller, J.M. Nieto, J.A. Conner, D.E. Pitts, P.C. Kirlin, and H.G. Halbrook. (2000). Value of serum-soluble intercellular adhesion molecule-1 for the noninvasive risk assessment of transplant coronary artery disease, posttransplant ischemic events, and cardiac graft failure.Circulation 1021549–1555.PubMedCrossRefGoogle Scholar
  18. 18.
    Labarrere, C.A., J.B. Lee, D.R. Nelson, M. Al-Hassani, S.J. Miller, and D.E. Pitts (2002). C-reactive protein, arterial endothelial activation, and development of transplant coronary artery disease: A prospective study.Lancet 3601462–1467.PubMedCrossRefGoogle Scholar
  19. 19.
    Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s.Nature 362801–809.PubMedCrossRefGoogle Scholar
  20. 20.
    Ross, R. (1999). Atherosclerosis-an inflammatory disease.N. Engl. J. Med. 340115–126.PubMedCrossRefGoogle Scholar
  21. 21.
    Lusis, A.J. (2000). Atherosclerosis.Nature 407233–241.PubMedCrossRefGoogle Scholar
  22. 22.
    Libby, P. (1995). Molecular bases of the acute coronary syndromes.Circulation 912844–2850.PubMedCrossRefGoogle Scholar
  23. 23.
    Libby, P. (2000). Changing concepts of atherogenesis.J. Intern. Med. 247349–358.PubMedCrossRefGoogle Scholar
  24. 24.
    Labarrere, C.A., D.R. Nelson, and W.P. Faulk (1997). Endothelial activation and development of coronary artery disease in transplanted human hearts.JAMA 2781169–1175.PubMedCrossRefGoogle Scholar
  25. 25.
    Labarrere, C.A., D.R. Nelson, and J.W. Park (2001). Pathologic markers of allograft arteriopathy: Insight into the pathophysiology of cardiac allograft chronic rejection.Curr Opin. Cardiol. 16110–117.PubMedCrossRefGoogle Scholar
  26. 26.
    Poston, R.S. Jr., M.E. Billingham, J. Pollard, E.G. Hoyt, and R.C. Robbins (1997). Effects of increased ICAM1 on reperfusion injury and chronic graft vascular disease.Ann. Thorac. Surg. 641004–1012.PubMedCrossRefGoogle Scholar
  27. 27.
    Fuster, V., M. Poon, and J.T. Willerson (1998). Learning from the transgenic mouse: Endothelium, adhesive molecules, and neointimal formation.Circulation 9716–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Koskinen, P.K. and K.B. Lemstrom (1997). Adhesion molecule P-selectin and vascular cell adhesion molecule-1 in enhanced heart allograft arteriosclerosis in the rat.Circulation 95191–196.PubMedCrossRefGoogle Scholar
  29. 29.
    Suzuki, J., M. Isobe, S. Yamazaki, S. Horie, Y. Okubo, and M. Sekiguchi (1997). Inhibition of accelerated coronary atherosclerosis with short-term blockade of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 in a heterotopic murine model of heart transplantation.J. Heart Lung Transplant. 161141–1148.PubMedGoogle Scholar
  30. 30.
    Ensminger, S.M., B.M. Spriewald, U. Steger, P.J. Morris, T.W. Mak, and K.J. Wood (2002). Platelet-endothelial cell adhesion molecule-1 (CD31) expression on donor endothelial cells attenuates the development of transplant arteriosclerosis.Transplantation 741267–1273.PubMedCrossRefGoogle Scholar
  31. 31.
    Massberg, S., G. Enders, F.C. de Melo Matos, L.I. Domschke Tomic, R. Leiderer, S. Eisenmenger, K. Messmer, and F. Krombach. (1999). Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo.Blood. 943829–3838.PubMedGoogle Scholar
  32. 32.
    Pober, J.S. and R.S. Cotran (1990). Cytokines and endothelial cell biology.Physiol. Rev. 70427–451.PubMedGoogle Scholar
  33. 33.
    Collins, T., M.A. Read, A.S. Neish, M.Z. Whitley, D. Thanos, and T. Maniatis (1995). Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.FASEB J 9899–909.PubMedGoogle Scholar
  34. 34.
    Mantovani, A., S. Sozzani, and M. Introna (1997). Endothelial activation by cytokines.Ann. N. Y. Acad. Sci. 83293–116.PubMedCrossRefGoogle Scholar
  35. 35.
    Bhakdi, S. (1998). Complement and atherogenesis: The unknown connection.Ann. Med. 30503–507.PubMedCrossRefGoogle Scholar
  36. 36.
    Pasceri, V., J.T. Willerson, and E.T.H. Yeh (2000). Direct proinflammatory effect of C-reactive protein on human endothelial cells.Circulation 1022165–2168.PubMedCrossRefGoogle Scholar
  37. 37.
    Verma, S., S.H. Li, M.V. Badiwala, R.D. Weisel, P.W.M. Fedak, R.K. Li, B. Dhillon, and D.A.G. Mickle (2002). Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.Circulation 1051890–1896.PubMedCrossRefGoogle Scholar
  38. 38.
    Labarrere C.A., G.P. Zaloga (2004). C-reactive protein: From innocent bystander to pivotal mediator of a therosclerosis. AmJ Med(In Press).Google Scholar
  39. 39.
    Mendall, M.A., D.P. Strachan, B.K. Butland, L. Hallam, J. Morris, P.M. Sweetnam, and P.C. Elwood. (2000). C-reactive protein: Relation to total mortality, cardiovascular mortality and cardiovascular risk factors in men.Eur. Heart J. 211584–1590.PubMedCrossRefGoogle Scholar
  40. 40.
    Rost, N.S., P.A. Wolf, C.S. Kase, M. Kelly-Hayes, H. Silbershatz, J.M. Massaro, R.B. D’Agostino, C. Franzblau, and P.W.F. Wilson (2001). Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack. The Framingham study.Stroke 322575–2579.PubMedCrossRefGoogle Scholar
  41. 41.
    Ford, E.S. and W.H. Giles (2000). Serum C-reactive protein and self-reported stroke. Findings from the Third National Health and Nutrition Examination Survey.Arterioscler. Thromb. Vasc. Biol. 201052–1056.PubMedCrossRefGoogle Scholar
  42. 42.
    Albert, C.M., J. Ma, N. Rifai, M.J. Stampfer, and P.M. Ridker (2002). Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death.Circulation 1052595–2599.PubMedCrossRefGoogle Scholar
  43. 43.
    Ridker, P.M., M.J. Stampfer, and N. Rifai (2001). Novel risk factors for systemic atherosclerosis. A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease.JAMA 2852481–2485.PubMedCrossRefGoogle Scholar
  44. 44.
    Burke, A.P., R.P. Tracy, F. Kolodgie, G.T. Malcom, A. Zieske, R. Kutys, J. Pestaner, J. Smialek, R. Virmani. (2002). Elevated C-reactive protein values and atherosclerosis in sudden coronary death: Association with different pathologies.Circulation 1052019–2023.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosenson, R.S. and W. Koenig (2002). High-sensitivity C-reactive protein and cardiovascular risk in patients with coronary heart disease.Cure Opin. Cardiol. 17325–331.CrossRefGoogle Scholar
  46. 46.
    van der Meer, I.M., M.P.M. de Maat, A.E. Hak, A.J. Kiliaan, A. Iglesias del Sol, D.A.M. van der Kuip, R.L.G. Nijhuis, A. Hofman, and J.C.M. Witteman (2002). C-reactive protein predicts progression of atherosclerosis measured at various sites in the arterial tree. The Rotterdam study.Stroke 332750–2755.CrossRefGoogle Scholar
  47. 47.
    Ridker, P.M., J.E. Buring, J. Shih, M. Matias, and C.H. Hennekens (1998). Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women.Circulation 98731–733.PubMedCrossRefGoogle Scholar
  48. 48.
    Pethig, K., B. Heublein, I. Kutschka, and A. Haverich (2000). Systemic inflammatory response in cardiac allograft vasculopathy: High-sensitive C-reactive protein is associated with progressive luminal obstruction.Circulation102(Suppl 3), 111233–111236.CrossRefGoogle Scholar
  49. 49.
    Eisenberg, M.S., H.J. Chen, M.K. Warshofsky, R.R. Sciacca, H.S. Wasserman, A. Schwartz, L.E. Rabbani. (2000). Elevated levels of plasma C-reactive protein are associated with decreased graft survival in cardiac transplant recipients.Circulation 1022100–2104.PubMedCrossRefGoogle Scholar
  50. 50.
    Dengler, T.J. and J.S. Pober (2000). Human vascular endothelial cells stimulate memory but not naive CD8+ T cells to differentiate into CTL retaining an early activation phenotype.J. Immunol. 1645146–5155.PubMedGoogle Scholar
  51. 51.
    Rose, M.L. (1998). Endothelial cells as antigen-presenting cells: Role in human transplant rejection.Cell. Mol. Life Sci. 54965–978.PubMedCrossRefGoogle Scholar
  52. 52.
    Faulk, W.P., M. Rose, P.L. Meroni, N. Del Papa, R.J. Tony, C.A. Labarrere, K. Busing, S.J. Crisp, M.J. Dunn, and D.R. Nelson. (1999). Antibodies to endothelial cells identify myocardial damage and predict development of coronary artery disease in patients with transplanted hearts.Hum. Immunol. 60826–832.PubMedCrossRefGoogle Scholar
  53. 53.
    Feeley, B.T., A.K. Park, S. Alexopoulos, E.G. Hoyt, M.P. Ennen, R.S. Poston, Jr., and R.C. Robbins. (1999). Pressure delivery of AS-ICAM-1 ODN with LFA-1 mAb reduces reperfusion injury in cardiac allografts.Ann. Thorac. Surg. 68119–124.PubMedCrossRefGoogle Scholar
  54. 54.
    Zund, G., S. Uezono, G.L. Stahl, A.L. Dzus, F.X. McGowan, P.R. Hickey, and S.P. Colgan. (1997). Hypoxia enhances induction of endothelial ICAM-1: Role for metabolic acidosis and proteasomes. Am.J. Physiol.273(Cell Physiol. 42), C1571–C1580.PubMedGoogle Scholar
  55. 55.
    Poston, R.S., M. Ennen, J. Pollard, E.G. Hoyt, M.E. Billingham, and R.C. Robbins (1998). Ex vivo gene therapy prevents chronic graft vascular disease in cardiac allografts.J. Thorac. Cardiovasc. Surg. 116386–396.PubMedCrossRefGoogle Scholar
  56. 56.
    Labarrere, C.A., D.R. Nelson, and W.P. Faulk (1998). Myocardial fibrin deposits in the first month after transplantation predict subsequent coronary artery disease and graft failure in cardiac allograft recipients.Am. J. Med. 105207–213.PubMedCrossRefGoogle Scholar
  57. 57.
    Labarrere, C.A. (2000). Anticoagulation factors as predictors of transplant-associated coronary artery disease.J. Heart Lung Transplant. 19623–633.CrossRefGoogle Scholar
  58. 58.
    Labarrere, C.A., D.R. Nelson, C.J. Cox, D. Pitts, P. Kirlin, and H. Halbrook (2000). Cardiac-specific troponin I levels and risk of coronary artery disease and graft failure following heart transplantation.JAMA 284457–464.PubMedCrossRefGoogle Scholar
  59. 59.
    Faulk, W.P., C.A. Labarrere, R.J. Tony, and D.R. Nelson (1998). Serum cardiac troponin-T concentrations predict development of coronary artery disease in heart transplant patients.Transplantation 661335–1339.PubMedCrossRefGoogle Scholar
  60. 60.
    Hamm, C.W., B.U. Goldmann, C. Heeschen, G. Kreymann, J. Berger, and T. Meinertz (1997). Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I.N. Engl. J. Med. 3371648–1653.PubMedCrossRefGoogle Scholar
  61. 61.
    Hlatky, M.A. (1997). Evaluation of chest pain in the emergency department.N. Engl. J. Med. 3371687–1689.PubMedCrossRefGoogle Scholar
  62. 62.
    Jaeger, B.R., J. Schirmer, J. Thiery, B.M. Meiser, P. Uberfuhr, E. Kreuzer, B. Reichart, and D. Seidel (1999). Coronary risk factor management for the prevention and treatment of graft vessel disease in heart transplant patients.Ther. Apher. 3214–218.PubMedCrossRefGoogle Scholar
  63. 63.
    Marelli D., H. Laks, J. Bresson, E. Houston, D. Fazio, F.C. Tsai, M. Hamilton, J. Moriguchi, G.C. Fonarow, A. Ardehali, R. Camara, C. Burch, J.C. Alejos, B. George, N. Kawata, and J. Kobashigawa (2000). Sixteen-year experience with 1,000 heart transplants at UCLA. In J.M. Cecka (ed.), Clinical transplants 2000. UCLA Immunogenetics Center, Los Angeles, CA, pp. 297–310.Google Scholar
  64. 64.
    Marelli, D., H. Laks, J.A. Kobashigawa, J. Bresson, A. Ardehali, F. Esmailian, M.D. Plunkett, and B. Kubak (2002). Seventeen-year experience with 1,083 heart transplants at a single institution.Ann. Thorac. Surg. 741558–1566; discussion 1567.PubMedCrossRefGoogle Scholar
  65. 65.
    Plenz, G., Z.F. Song, T.D.T. Tjan, C. Koenig, H.A. Baba, M. Erren, M. Flesch, T. Wichter, H.H. Scheld, and M.C. Deng (2001). Activation of the cardiac interleukin-6 system in advanced heart failure.Eur. J. Heart Fail. 3415–421.PubMedCrossRefGoogle Scholar
  66. 66.
    Plenz, G., H. Eschert, M. Erren, T. Wichter, M. Bohm, M. Flesch, H.H. Scheid, and M.C. Deng (2002). The interleukin-6/interleukin-6-receptor system is activated in donor hearts.J. Am. Coll. Cardiol. 391508–1512.PubMedCrossRefGoogle Scholar
  67. 67.
    Yen, M.H., G. Pilkington, R.C. Starling, N.B. Ratliff, P.M. McCarthy, J.B. Young, G.M. Chisolm, and M.C. Penn (2002). Increased tissue factor expression predicts development of cardiac allograft vasculopathy.Circulation 1061379–1383.PubMedCrossRefGoogle Scholar
  68. 68.
    Holschermann, H., R.M. Bohle, H. Zeller, H. Schmidt, U. Stahl, L. Fink, H. Grimm, H. Tillmanns and W. Haberbosch (1999). In situ detection of tissue factor within the coronary intima in rat cardiac allograft vasculopathy. Am.J. Pathol. 154211–220.PubMedCrossRefGoogle Scholar
  69. 69.
    Holschermann, H., R.M. Bohle, H. Schmidt, H. Zeller, L. Fink, U. Stahl, H. Grimm, H. Tillmanns, and W. Haberbosch (2000). Hirudin reduces tissue factor expression and attenuates graft arteriosclerosis in rat cardiac allografts.Circulation 102357–363.PubMedCrossRefGoogle Scholar
  70. 70.
    Meckel, C.R., T.J. Anderson, G.H. Mudge, R.N. Mitchell, A.C. Yeung, A.P. Selwyn, P. Ganz, and D.I. Simon (1997). Hemostatic/fibrinolytic predictors of allograft coronary artery disease after cardiac transplantation.vast. Med. 2306–312.Google Scholar
  71. 71.
    Jaeger, B.R., B. Meiser, D. Nagel, P. Uberfuhr, J. Thiery, U. Brandl, W. Bruckner, W. von Scheidt, E. Kreuzer, G. Steinbeck, B. Reichart, and D. Seidel (1997). Aggressive lowering of fibrinogen and cholesterol in the prevention of graft vessel disease after heart transplantation.Circulation96(Suppl II), II-154-II-158.PubMedGoogle Scholar
  72. 72.
    Jaeger, B.R., P. Braun, D. Nagel, J.W. Park, D.B. Gysan, M. Oberhoffer, K.P. Mellwig, G. Bahlmann, F. Heigl, R. Heinzler, H. Militzer, P. Moriarty, S. Schutterle, H. Tachezy, E. Kreuzer, M.C. Deng, B. Reichart, and D. Seidel (2002). A Combined treatment of statins and H.E.L.P. apheresis for treatment of cardiac allograft vasculopathy. In G.M. Kostner, K.M. Kostner, and B. Kostner (ed.)Atherosclerosis: Risk Factors, Diagnosis, and Treatment.Monduzzi Editore S.p.A., Medimond Inc, Bologna, Italy, pp. 331–336.Google Scholar
  73. 73.
    Hunt, B.J., H. Segal, and M. Yacoub (1991). Haemostatic changes after heart transplantation and their relationship to accelerated coronary sclerosis.Transplant. Proc. 231233–1235.PubMedGoogle Scholar
  74. 74.
    Jaeger, B.R., P. Goehring, J. Schirmer, S. Uhrig, P. Lohse, E. Kreuzer, B. Reichart, and D. Seidel (2001). Consistent lowering of clotting factors for the treatment of acute cardiovascular syndromes and hypercoagulability: A different pathophysiological approach.Ther. Apher. 5252–259.PubMedCrossRefGoogle Scholar
  75. 75.
    Labarrere, C.A. (1999). Relationship of fibrin deposition in microvasculature to outcomes in cardiac transplantation.Curr. Opin. Cardiol. 14133–139.PubMedCrossRefGoogle Scholar
  76. 76.
    Labarrere, C.A., R.J. Torry, D.R. Nelson, S.J. Miller, D.E. Pitts, P.C. Kirlin, H.G. Halbrook (2001). Vascular antithrombin and clinical outcome heart transplant patients.Am. J. Cardiol. 87425–431.PubMedCrossRefGoogle Scholar
  77. 77.
    Labarrere, C.A., and D.R. Nelson (2001). Role of hemostasis, anticoagulation, fibrinolysis and endothelial activation. In M.L. Rose (ed.)Transplant-Associated Coronary Artery Vasculopathy.Landes, Bioscience, Georgetown, TX, pp. 90–117.Google Scholar
  78. 78.
    Subramanian, S.V., M.L. Fitzgerald, and M. Bernfield (1997). Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation.J. Biol. Chem. 27214713–14720.PubMedCrossRefGoogle Scholar
  79. 79.
    Fujii, N., T. Kaji, T. Akai, and F. Koizumi (1997). Thrombin reduces large heparan sulfate proteoglycan molecules in cultured vascular endothelial cell layers through inhibition of core protein synthesis.Thromb. Res. 88299–307.PubMedCrossRefGoogle Scholar
  80. 80.
    Ostrovsky, L., R.C. Woodman, D. Payne, D. Teoh, and P. Kubes (1997). AntithrombinIIIprevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion.Circulation 962302–2310.PubMedCrossRefGoogle Scholar
  81. 81.
    Key, N.S., J.L. Platt, and G.M. Vercellotti (1992). Vascular endothelial cell proteoglycans are susceptible to cleavage by neutrophils.Arterioscler. Thromb. 12836–842.PubMedCrossRefGoogle Scholar
  82. 82.
    Woodman, R.C., L. Ostrovsky, D. Teoh, D. Payne, M.C. Poon, and P. Kubes (1998). Antithrombin and ischemia/reperfusion.Blood Coagul. Fibrinolysis 9(Supp12), S7–S15.PubMedGoogle Scholar
  83. Tony, R.J., C.A. Labarrere, D.S. Tony, V.J. Holt, and W.P. Faulk (1995). Vascular endothelial growth factor expression in transplanted human hearts.Transplantation 601451–1457.CrossRefGoogle Scholar
  84. 84.
    Tony, R.J., L. Bai, S.J. Miller, C.A. Labarrere, D. Nelson, and D.S. Tony (2001). Increased vascular endothelial growth factor expression in human hearts with microvascular fibrin.J. Mol. Cell. Cardiol. 33175–184.CrossRefGoogle Scholar
  85. 85.
    Labarrere, C.A., D. Pitts, D.R. Nelson, and W.P. Faulk (1995). Vascular tissue plasminogen activator and the development of coronary artery disease in heart-transplant recipients.N. Engl. J. Med. 3331111–1116.PubMedCrossRefGoogle Scholar
  86. 86.
    Warshofsky, M.K., H.S. Wasserman, W. Wang, R. Teng, R. Sciacca, M. Apfelbaum, A. Schwartz, R.E. Michler, D.M. Mancini, P.J. Cannon, and L.E. Rabbani (1997). Plasma levels of tissue plasminogen activator and plasminogen activator inhibitor-1 are correlated with the presence of transplant coronary artery disease in cardiac transplant recipients. Am.J. Cardiol. 80145–149.PubMedCrossRefGoogle Scholar
  87. 87.
    Warshofsky, M.K., M. Dominguez, M.S. Eisenberg, H.S. Wasserman, R. Sciacca, W. Wang, A.D. Simon, J.H. Morse, A. Schwartz, E. Angles-Cano, and L.E. Rabbani (2001). Elevated plasma tissue plasminogen activator and anti-THP-1 antibodies are independently associated with decreased graft survival in cardiac transplant recipients.Am. J. Cardiol. 8830–34.PubMedCrossRefGoogle Scholar
  88. 88.
    Scholl, F.G., L. Sen, D.C. Drinkwater, H. Laks, X.Y. Ma, Y.S. Hong, P. Chang, and G. Cui (2001). Effects of human tissue plasminogen activator gene transfer on allograft coronary atherosclerosis.J. Heart Lung Transplant. 20322–329.PubMedCrossRefGoogle Scholar
  89. 89.
    Benza, R.L., H.E. Grenett, R.C. Bourge, J.K. Kirklin, D.C. Naftel, P.F. Castro, D.C. McGiffin, J.F. George, and F.M. Booyse (1998). Gene polymorphisms for plasminogen activator inhibitor-1/tissue plasminogen activator and development of allograft coronary artery disease.Circulation 982248–2254.PubMedCrossRefGoogle Scholar
  90. 90.
    Labarrere, C.A., D. Pitts, H. Halbrook, and W.P. Faulk (1994). Tissue plasminogen activator, plasminogen activator inhibitor-1, and fibrin as indexes of clinical course in cardiac allograft recipients. An immunocytochemical study.Circulation 891599–1608.PubMedCrossRefGoogle Scholar
  91. 91.
    Garvin, M.R., M. Labinaz, K. Pels, V.M. Walley, H.F. Mizgala, and E.R. O’Brien (1997). Arterial expression of the plasminogen activator system early after cardiac transplantation.Cardiovasc. Res. 35241–249.PubMedCrossRefGoogle Scholar
  92. 92.
    Faulk, W.P., C.A. Labarrere, D.R. Nelson, and D. Pitts (1995). Hemostasis, fibrinolysis, and natural anticoagulation in transplant vascular sclerosis.J. Heart Lung Transplant.14(Suppl), S158–S164.PubMedGoogle Scholar
  93. 93.
    Barbir, M., S. Kushwaha, B. Hunt, A. Macken, G.R. Thompson, A. Mitchell, D. Robinson, and M. Yacoub (1992). Lipoprotein(a) and accelerated coronary artery disease in cardiac transplant recipients.Lancet 3401500–1502.PubMedCrossRefGoogle Scholar
  94. 94.
    Park, J.W., M. Merz, P. Braun, and M. Vermeltfoort (1996). Lipid disorder and transplant coronary artery disease in long-term survivors of heart transplantation.J. Heart Lung Transplant. 15572–579.PubMedGoogle Scholar
  95. 95.
    Yeatman, M., J.A. Smith, J.J. Dunning, S.R. Large, and J. Wallwork (1995). Cardiac transplantation: A review.Cardiovasc. Surg. 31–14.PubMedCrossRefGoogle Scholar
  96. 96.
    Land, W. (1996). Das chronische Transpinatatversagen.-Zur Atiologic unter Berucksichtigung antigenunabhangiger nichtimmunologischer Faktoren sowie Strategic hinsichtlich einer Verhutung.Munch. med. Wsch 138119/35–124/41.Google Scholar
  97. 97.
    Carlsen, E. and H. Prydz (1987). Enhancement of procoagulant activity in stimulated mononuclear blood cells and monocytes by cyclosporine.Transplantation 43543–548.CrossRefGoogle Scholar
  98. 98.
    Fishman, S.J., L.J. Wylonis, J.D. Glickman, J.J. Cook, D.S. Warsaw, C.A. Fischer, D.J. Jorkasky, S. Niewiarowski, U.P. Addonizio (1991). Cyclosporine A augments human platelet sensitivity to aggregating agents by increasing fibrinogen receptor availability.J. Surg. Res. 5193–98.PubMedCrossRefGoogle Scholar
  99. 99.
    Robson, M., I. Cote, I. Abbs, G. Koffman, and D. Goldsmith (2003). Thrombotic micro-angiopathy with sirolimus-based immunosuppression: Potentiation of calcineurin-inhibitor-induced endothelial damage?Am. J. Transplant. 3324–327.PubMedCrossRefGoogle Scholar
  100. 100.
    Saikali, J.A., L.D. Truong, and W.N. Suki (2003). Sirolimus may promote thrombotic microangiopathy. Am.J. Transplant. 3229–230.CrossRefGoogle Scholar
  101. 101.
    Schroeder, J.S., S.Z. Gao, E.L. Alderman, S.A. Hunt, I. Johnstone, D.B. Boothroyd, V. Wiederhold, and E.B. Stinson (1993). A preliminary study of diltiazem in the prevention of coronary artery disease in heart-transplant recipients.N. Engl. J. Med. 328164–170.PubMedCrossRefGoogle Scholar
  102. 102.
    Kobashigawa, J.A., S. Katznelson, H. Laks, J.A. Johnson, L. Yeatman, X.M. Wang, D. Chia, P.I. Terasaki, A. Sabad, G.A. Cogert, K. Trosian, M.A. Hamilton, J.D. Moriguchi, N. Kawata, A. Hage, D.C. Drinkwater, L.W. Stevenson (1995). Effect of pravastatin on outcomes after cardiac transplantation.N. Engl. J Med. 333621–627.PubMedCrossRefGoogle Scholar
  103. 103.
    Reichart, B., B.M. Meiser, K. Wenke, U. Brandl, D. Seidel, and J. Thiery (1995). What is the role of lipid lowering therapy in heart-allograft failure?Kidney Int.-Suppl. 52, S52–S55.Google Scholar
  104. 104.
    Wenke, K., B. Meiser, J. Thiery, D. Nagel, W. von Scheidt, K. Krobot, G. Steinbeck, D. Seidel, and B. Reichart (2003). Simvastatin initiated early after heart transplantation: 8-year prospective experience.Circulation 10793–97.PubMedCrossRefGoogle Scholar
  105. 105.
    Kobashigawa, J.A. (2001). Statins as immunosuppressive agents.Liver Transplant. 7559–561.CrossRefGoogle Scholar
  106. 106.
    Seidel, D., V.W. Armstrong, and P. Schuff-Werner (1991). The HELP-LDL-apheresis multicentre study, an angiographically assessed trial on the role of LDL-apheresis in the secondary prevention of coronary heart disease. I. Evaluation of safety and cholesterol-lowering effects during the first 12 months.Eur. J. Clin. Invest. 21375–383.PubMedCrossRefGoogle Scholar
  107. 107.
    Jaeger, B.R. (2001). Evidence for maximal treatment of atherosclerosis: Drastic reduction of cholesterol and fibrinogen restores vascular homeostasis.Ther. Apher. 5207–211.PubMedCrossRefGoogle Scholar
  108. 108.
    Moriarty, P.M., C.A. Gibson, J. Shih, and M.S. Matias (2001). C-reactive protein and other markers of inflammation among patients undergoing HELP LDL apheresis.Atherosclerosis 158495–498.PubMedCrossRefGoogle Scholar
  109. 109.
    Jaeger, B.R., F. Bengel, K. Odaka, C.A. Labarrere, S. Bengsch, C. Engelschalk, E. Kreuzer, P. Ueberfuhr, B. Reichart, and D. Seidel (2004). Reduction of plasma cholesterol and fibrinogen by H.E.L.P. Apheresis increases myocardial perfusion in heart transplant patients.J. Am. Coll. Cardiol.43(Suppl A), 186A.CrossRefGoogle Scholar
  110. 110.
    Park, J.W., M. Merz, and P. Braun (1997). Regression of transplant coronary artery disease during chronic low-density lipoprotein-apheresis.J. Heart Lung Transplant. 16290–297.PubMedGoogle Scholar
  111. 111.
    Jaeger, B.R., E. Kreuzer, A. Knez, A. Leber, P. Uberfuhr, M. Borner, P. Milz, B. Reichart, and D. Seidel (2002). Case reports on emergency treatment of cardiovascular syndromes through heparin-mediated low-density lipoprotein/fibrinogen precipitation: A new approach to augment cerebral and myocardial salvage.Ther. Apher. 6394–398.PubMedCrossRefGoogle Scholar
  112. 112.
    Jaeger, B.R., T. Tsobanelis, F. Bengel, M. Schwaiger, and D. Seidel (2002). Long-term prevention of premature coronary atherosclerosis in homozygous familial hypercholesterolemia.J. Pediatr. 141125–128.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Carlos A. Labarrere
    • 1
  • Beate R. Jaeger
    • 2
  1. 1.Methodist Research InstituteClarian Health Partners and Indiana University School of MedicineIndianapolisUSA
  2. 2.Institute for Clinical ChemistryUniversity Hospital GroßhadernMunichGermany

Personalised recommendations