The Immunobiology of Post-Transplant Lymphoproliferative Disorders (PTLD)

  • Anne M. VanBuskirk


Post-transplant lymphoproliferative disorders (PTLD) are actually a myriad of conditions in recipients of bone marrow or solid organ transplants, ranging from an infectious mononucleosis-like syndrome to frank lymphoma. At its worst, PTLD is an aggressive B-cell malignancy afflicting approximately 2-7% of all transplant patients. In this most severe form, PTLD can result in up to 50-90% mortality1-3. Typically, PTLD is of recipient origin in solid organ transplant recipients, and of donor origin in bone marrow transplant patients. Approximately 80% of PTLD occur within 18 months of transplantation. PTLD appear to progress from mononucleosis-like hyperplasia to oligoclonal lesions, then to polyclonal lesions, and ultimately to monoclonal lymphomas. If diagnosed early, some PTLD can be successfully treated with a reduction in immunosuppressionl, 24. PTLD occurring late after transplantation tend to be monoclonal lymphomas, and are much more difficult to treat, often requiring cessation of immunosuppression and chemotherapy5, 6. Most PTLD are B-cell lymphomas associated with Epstein—Barr virus (EBV)7. However, isolated cases of EBV-positive T-cell and NK-cell lymphomas have been reported8. In addition, EBV-negative PTLD appear to be increasing in incidence, particularly among PTLD arising late after transplantations, 6 The overall incidence of PTLD varies according to the type of organ transplanted. Adult kidney recipients tend to have the lowest overall incidence, with only 1-2% of transplant recipients being affected. In contrast, approximately 10-20% of combined heart and lung recipients develop PTLD1-3. Given the life-threatening nature of PTLD, it is considered a serious clinical problem in transplantation.


Transplant Recipient Lymphoproliferative Disease Solid Organ Transplant Recipient Cytokine Gene Polymorphism Cytokine Genotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paya, C.V., J.J. Fung, M.A. Nalesnik, E. Kieff, M. Green, G. Goreset al.(1999). Epstein—Barr virus-induced posttransplant lymphoproliferative disorders.Transplantation68, 1517.PubMedCrossRefGoogle Scholar
  2. 2.
    Nalesnik, M.A. (1997). Clinicopathologic features of posttransplant lymphoproliferative disorders.Ann. Transplantation2, 33.Google Scholar
  3. 3.
    Nalesnik, M.A. (2002). Clinicopathologic characteristics of post-transplant lymphoproliferative disorders.Recent Results Cancer Res. 1599.PubMedCrossRefGoogle Scholar
  4. 4.
    Green, M. (2001). Management of Epstein—Barr virus-induced post-transplant lymphoproliferative disease in recipients of solid organ transplantation. Am.J. Transplant.1, 103.PubMedGoogle Scholar
  5. 5.
    Muti, G., S. Cantoni, R. Oreste, C. Klersy, G. Gini, V. Rossiet al.(2002). Post-transplant lymphoproliferative disorders: Improved outcome after clinico-pathologically tailored treatment.Haematologica 8767.PubMedGoogle Scholar
  6. 6.
    Nalesnik, M.A. (2001). The diverse pathology of post-transplant lymphoproliferative disorders: The importance of a standardized approach.Transpl. Infect. Dis. 388.PubMedCrossRefGoogle Scholar
  7. 7.
    Rickinson, A.B. and E. Kieff (1996). Epstein-Barr virus. In B.N. Fields, D.M. Knipe, and P.M. Howleyet al.(eds)Fields Virology.Lippincott-Raven, Philadelphia, p. 2397.Google Scholar
  8. 8.
    Kwong, Y.L., C.C. Lam, and T.M. Chan (2000). Post-transplantation lymphoproliferative disease of natural killer cell lineage: A clinicopathological and molecular analysis.Br. J. Haematol. 110197.PubMedCrossRefGoogle Scholar
  9. 9.
    .Thorley-Lawson, D.A. (2001). Epstein-Barr virus: Exploiting the immune system.Nat. Rev. Immunol. 1, 75. PubMedCrossRefGoogle Scholar
  10. 10.
    Bishop, G.A. and L.K. Busch (2002). Molecular mechanisms of B-Lymphocyte transformation by Epstein-Barr virus.Microbes Infect. 4853.PubMedCrossRefGoogle Scholar
  11. 11.
    Middeldorp, J.M., A.A. Brink, A.J. van den Brule, and C.J. Meijer (2003). Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders.Crit. Rev. Oncol. Hematol. 451.PubMedCrossRefGoogle Scholar
  12. 12.
    Rowe, D.T. (1999). Epstein-Barr virus immortalization and latency.Front Biosci. 4D346.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson, J.B., J.L. Bell, and A.J. Levine (1996). Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice.EMBO J. 153117.PubMedGoogle Scholar
  14. 14.
    Tornell, J., S. Farzad, A. Espander-Jansson, G. Matejka, O. Isaksson, and L. Rymo (1996). Expression of Epstein-Barr nuclear antigen 2 in kidney tubule cells induce tumors in transgenic mice.Oncogene 121521.PubMedGoogle Scholar
  15. 15.
    Kim, O.J. and J.L. Yates (1993). Mutants of Epstein-Barr virus with a selective marker disrupting the TP gene transform B cells and replicate normally in culture.J. Virol. 677634.PubMedGoogle Scholar
  16. 16.
    Yates, J.L., N. Warren, and B. Sugden (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells.Nature 313812.PubMedCrossRefGoogle Scholar
  17. 17.
    Tomkinson, B., E. Robertson, and E. Kieff (1993). Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation.J. Virol. 672014.PubMedGoogle Scholar
  18. 18.
    Tomkinson, B. and E. Kieff (1992). Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro.J. Virol. 662893.PubMedGoogle Scholar
  19. 19.
    Robertson, E.S., S. Grossman, E. Johannsen, C. Miller, J. Lin, B. Tomkinsonet al.(1995). Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa.J. Virol. 693108.Google Scholar
  20. 20.
    Zhao, B. and C.E. Sample (2000). Epstein-Barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site.J. Virol. 745151.PubMedCrossRefGoogle Scholar
  21. 21.
    Mannick, J.B., J.I. Cohen, M. Birkenbach, A. Marchini, and E. Kieff (1991). The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation.J. Virol. 656826.PubMedGoogle Scholar
  22. 22.
    Allan, G.J., G.J. Inman, B.D. Parker, D.T. Rowe, and EJ. Farrell (1992). Cell growth effects of Epstein-Barr virus leader protein.J. Gen. Virol. 73(Pt6), 1547.Google Scholar
  23. 23.
    Sinclair, A.J., I. Palmero, G. Peters, and P.J. Farrell (1994). EBNA-2 and EBNA-LP cooperate to cause GO to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus.EMBO J. 133321.PubMedGoogle Scholar
  24. 24.
    Harada, S. and E. Kieff (1997). Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation.J. Virol. 716611.PubMedGoogle Scholar
  25. 25.
    Hammerschmidt, W. and B. Sugden (1989). Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes.Nature 340393.PubMedCrossRefGoogle Scholar
  26. 26.
    Baichwal, V.R., W. Hammerschmidt, and B. Sugden (1989). Characterization of the BNLF-1 oncogene of Epstein-Barr virus.Curr. Top. MicrobioL Immunol. 144233.PubMedCrossRefGoogle Scholar
  27. 27.
    Busch, L.K. and G.A. Bishop (1999). The EBV transforming protein, latent membrane protein 1, mimics and cooperates with CD40 signaling in B lymphocytes.J. Immunol. 1622555.PubMedGoogle Scholar
  28. 28.
    Kaye, K.M., K.M. Izumi, and E. Kieff (1993). Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation.Proc. Natl. Acad. Sei. USA 909150.CrossRefGoogle Scholar
  29. 29.
    Izumi, K.M., K.M. Kaye, and E.D. Kieff (1997). The Epstein-Barr virus LMP1 amino acid sequence that engages tumor necrosis factor receptor associated factors is critical for primary B lymphocyte growth transformation.Proc. Natl. Acad. Sci. USA 941447.PubMedCrossRefGoogle Scholar
  30. 30.
    Kulwichit, W., R.H. Edwards, E.M. Davenport, J.F. Baskar, V. Godfrey, and N. Raab-Traub (1998). Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice.Proc. Natl. Acad. Sci. USA 9511963.PubMedCrossRefGoogle Scholar
  31. 31.
    Miller, C.L., J.H. Lee, E. Kieff, A.L. Burkhardt, J.B. Bolen, and R. Longnecker (1994). Epstein-Barr virus protein LMP2A regulates reactivation from latency by negatively regulating tyrosine kinases involved in slg-mediated signal transduction.Infect. Agents Dis. 3128.PubMedGoogle Scholar
  32. 32.
    Merchant, M., R.G. Caldwell, and R. Longnecker (2000). The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo.J. Virol. 749115.PubMedCrossRefGoogle Scholar
  33. 33.
    Caldwell, R.G., J.B. Wilson, S.J. Anderson, and R. Longnecker (1998). Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals.Immunity 9405.PubMedCrossRefGoogle Scholar
  34. 34.
    Tanner, J.E. and C. Alfieri (2001). The Epstein-Barr virus and post-transplant lymphoproliferative disease: Interplay of immunosuppression, EBV, and the immune system in disease pathogenesis.Transpl. Infect. Dis. 360.PubMedCrossRefGoogle Scholar
  35. 35.
    D’Addario, M., T.A. Libermann, J. Xu, A. Ahmad, and J. Menezes (2001). Epstein-Barr virus and its glycoprotein-350 upregulate IL-6 in human B-lymphocytes via CD21, involving activation of NF-kappaB and different signaling pathways.J. Mol. Biol. 308501.PubMedCrossRefGoogle Scholar
  36. 36.
    D’Addario, M., A. Ahmad, A. Morgan, and J. Menezes (2000). Binding of the Epstein-Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-alpha gene expression in monocytic cells via NF-kappaB involving PKC, PI3-K and tyrosine kinases.J. Mol. Biot 298765.CrossRefGoogle Scholar
  37. 37.
    Sbih-Lammali, F., B. Clausse, H. Ardila-Osorio, R. Guerry, M. Talbot, S. Havouiset al.(1999). Control of apoptosis in Epstein-Barr virus-positive nasopharyngeal carcinoma cells: Opposite effects of CD95 and CD40 stimulation.Cancer Res. 59924.PubMedGoogle Scholar
  38. 38.
    Herrmann, K., P. Frangou, J. Middeldorp, and G. Niedobitek (2002). Epstein-Barr virus replication in tongue epithelial cells.J. Gen. Virol. 832995.PubMedGoogle Scholar
  39. 39.
    Babcock, G.J., L.L. Decker, M. Volk, and D.A. Thorley-Lawson (1998). EBV persistence in memory B cells in vivo.Immunity 9395.PubMedCrossRefGoogle Scholar
  40. 40.
    Miyashita, E.M., B. Yang, G.J. Babcock, and D.A. Thorley-Lawson (1997). Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell.J. Virol. 714882.PubMedGoogle Scholar
  41. 41.
    Levitskaya, J., M. Coram, V. Levitsky, S. Imreh, P.M. Steigerwald-Mullen, G. Kleinet al.(1995). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1.Nature 375685.PubMedCrossRefGoogle Scholar
  42. 42.
    Frisan, T., Q.J. Zhang, J. Levitskaya, M. Coram, M.G. Kurilla, and M.G. Masucci (1996). Defective presentation of MHC class I-restricted cytotoxic T-cell epitopes in Burkitt’s lymphoma cells.Int. J. Cancer 68251.PubMedCrossRefGoogle Scholar
  43. 43.
    Fukuda, M., W. Kurosaki, K. Yanagihara, H. Kuratsune, and T. Sairenji (2002). A mechanism in Epstein-Barr virus oncogenesis: Inhibition of transforming growth factor-beta 1-mediated induction of MAPK/p21 by LMP1.Virology 302310.PubMedCrossRefGoogle Scholar
  44. 44.
    Liang, C.L., J.L. Chen, Y.P. Hsu, J.T. Ou, and Y.S. Chang (2002). Epstein-Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins.J. Biol. Chem. 27723345.PubMedCrossRefGoogle Scholar
  45. 45.
    Liang, C L, C N Tsai, P.J. Chung, J.L. Chen, C.M. SunR.H.Chenet al.(2000). Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.Virology 277184.PubMedCrossRefGoogle Scholar
  46. 46.
    FahmiH.C. Cochet, Z. Hmama, P. Opolon, and I. Joab (2000). Transforming growth factor beta 1 stimulates expression of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway.J. Virol. 745810.PubMedCrossRefGoogle Scholar
  47. 47.
    Savoie, A., C. Perpête, L. Carpentier, J. Joncas, and C. Alfieri (1994). Direct correlation between the load of Epstein-Barr virus-infected lymphocytes in the peripheral blood of pediatric transplant patients and risk of lymphoproliferative disease.Blood 832715.PubMedGoogle Scholar
  48. 48.
    Holmes, R.D. and R.J. Sokol (2002). Epstein-Barr virus and post-transplant lymphoproliferative disease.Pediatr. Transplant. 6456.PubMedCrossRefGoogle Scholar
  49. 49.
    RoweD.T.S. Webber, E.M. Schauer, J. Reyes, and M. Green (2001). Epstein-Barr virus load monitoring: Its role in the prevention and management of post-transplant lymphoproliferative disease.Transpl. Infect. Dis. 379.PubMedCrossRefGoogle Scholar
  50. 50.
    Smets, F., D. Latinne, H. Bazin, R. Reding, J.B. Otte, J.P. Butset al.(2002). Ratio between Epstein-Barr viral load and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease.Transplantation 731603.PubMedCrossRefGoogle Scholar
  51. 51.
    Hsieh, W.S., M.V. Lemas, and R.F. Ambinder (1999). The biology of Epstein-Barr virus in post-transplant lymphoproliferative disease.Transpl. Infect. Dis. 1204.PubMedCrossRefGoogle Scholar
  52. 52.
    Cacciarelli, T.V., J. Reyes, R. Jaffe, G.V. Mazariegos, A. Jain, J.J. Funget al.(2001). Primary tacrolimus (FK506) therapy and the long-term risk of post-transplant lymphoproliferative disease in pediatric liver transplant recipients.Pediatr. Transplant. 5359.PubMedCrossRefGoogle Scholar
  53. 53.
    Hopwood, P.A., L. Brooks, R. Parratt, B.J. Hunt, B. Maria, T.J. Aleroet al.(2002). Persistent Epstein-Barr virus infection: Unrestricted latent and lytic viral gene expression in healthy immunosuppressed transplant recipients.Transplant. 74194.CrossRefGoogle Scholar
  54. 54.
    Mattila, P.S., S.M. Aalto, L. Heikkila, S. Mattila, M. Nieminen, E. Auvinenet al.(2001). Malignancies after heart transplantation: Presence of Epstein-Barr virus and cytomegalovirus.Clin. Transplant. 15337.PubMedCrossRefGoogle Scholar
  55. 55.
    Aalto, S.M., K. Linnavuori, H. Peltola, E. Vuori, B. Weissbrich, J. Schubertet al.(1998). Immunoreactivation of Epstein-Barr virus due to cytomegalovirus primary infection.J. Med. Virol. 56186.PubMedCrossRefGoogle Scholar
  56. 56.
    Kapelushnik, J., S. Ariad, D. Benharroch, D. Landau, A. Moser, G. Delsolet al.(2001). Post renal transplantation human herpesvirus 8-associated lymphoproliferative disorder and Kaposi’s sarcoma.Br. J. Haematol. 113425.Google Scholar
  57. 57.
    Rickinson, A.B., S.P. Lee, and N.M. Steven (1996). Cytotoxic T lymphocyte responses to Epstein-Barr virus.Curr. Opin. Immunol. 8492.PubMedCrossRefGoogle Scholar
  58. 58.
    Savoldo, B., J. Goss, Z. Liu, M.H. Huls, S. Doster, A.P. Geeet al.(2001). Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients.Transplantation 721078.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu, Z., B. Savoldo, H. Huls, T. Lopez, A. Gee, J. Wilsonet al.(2002). Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the prevention and treatment of EBV-associated post-transplant lymphomas.Recent Results Cancer Res. 159123.PubMedCrossRefGoogle Scholar
  60. 60.
    Rooney, C.M., C.A. Smith, C.Y. Ng, S.K. Loftin, J.W. Sixbey, Y. Ganet al.(1998). Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients.Blood 92(5)1549.PubMedGoogle Scholar
  61. 61.
    Heslop, H.E. and C.M. Rooney (1997). Adoptive cellular immunotherapy for EBV lymphoproliferative disease.Immunol. Rev. 157217.PubMedCrossRefGoogle Scholar
  62. 62.
    Gottschalk, S., C.Y. Ng, M. Perez, C.A. Smith, C. Sample, M.K. Brenneret al.(2001). An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs.Blood 97835.PubMedCrossRefGoogle Scholar
  63. 63.
    Hague, T., G.M. Wilkie, C. Taylor, P.L. Amlot, P. Murad, A. Ileyet al.(2002). Treatment of Epstein-Barr-viruspositive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells.Lancet 360436.CrossRefGoogle Scholar
  64. 64.
    Hague, T., C. Taylor, G.M. Wilkie, P. Murad, P.L. Amlot, S. Beathet al.(2001). Complete regression of post-transplant lymphoproliferative disease using partially HLA-matched Epstein-Barr virus-specific cytotoxic T cells.Transplantation 721399.CrossRefGoogle Scholar
  65. 65.
    Hague, T., P.L. Amlot, N. Helling, J.A. Thomas, R Sweny, K. Rolleset al.(1998). Reconstitution of EBVspecific T cell immunity in solid organ transplant recipients.J. Immunol. 1606204.Google Scholar
  66. 66.
    Porcu, P., C.F. Eisenbeis, R.P. Pelletier, E.A. Davies, R.A. Baiocchi, S. Roychowdhuryet al.(2002). Successful treatment of posttransplantation lymphoproliferative disorder (PTLD) following renal allografting is associated with sustained CD8(+) T-cell restoration.Blood 1002341.PubMedCrossRefGoogle Scholar
  67. 67.
    Redchenko, I.V. and A.B. Rickinson (1999). Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells.J. Virol. 73334.PubMedGoogle Scholar
  68. 68.
    Rea, D., C. Fourcade, V. Leblond, M. Rowe, I. Joab, L. Edelmanet al.(1994). Patterns of Epstein-Barr virus latent and replicative gene expression in Epstein-Barr virus B cell lymphoproliferative disorders after organ transplantation.Transplantation 58317.PubMedGoogle Scholar
  69. 69.
    Montone, K.T., R.L. Hodinka, K.E. Salhany, E. Lavi, A. Rostami, and J.E. Tomaszewski (1996). Identification of Epstein-Barr virus lytic activity in post-transplantation lymphoproliferative disease.Mod. Pathol. 9621.PubMedGoogle Scholar
  70. 70.
    Green, M., J. Reyes, S. Webber, and D. Rowe (2001). The role of antiviral and immunoglobulin therapy in the prevention of Epstein-Barr virus infection and post-transplant lymphoproliferative disease following solid organ transplantation.Transpl. Infect. Dis. 397.PubMedCrossRefGoogle Scholar
  71. 71.
    Oertel, S.H. and H. Riess (2002). Anti-viral treatment of Epstein-Barr virus-associated lymphoproliferations.Recent Results Cancer Res. 15989.PubMedCrossRefGoogle Scholar
  72. 72.
    Faller, D.V., S.J. Mentzer, and S.P. Perrine (2001). Induction of the Epstein-Barr virus thymidine kinase gene with concomitant nucleoside antivirals as a therapeutic strategy for Epstein-Barr virus-associated malignancies.Curr. Opin. Oncol. 13360.PubMedCrossRefGoogle Scholar
  73. 73.
    Mentzer, S.J., S.P. Perrine, and D.V. Faller (2001). Epstein-Barr virus post-transplant lymphoproliferative disease and virus-specific therapy: Pharmacological re-activation of viral target genes with arginine butyrate.Transpl. Infect. Dis. 3177.PubMedCrossRefGoogle Scholar
  74. 74.
    Mentzer, S.J., J. Fingeroth, J.J. Reilly, S.P. Perrine, and D.V. Faller (1998). Arginine butyrate-induced susceptibility to ganciclovir in an Epstein-Barr-virus-associated lymphoma.Blood Cells Mol. Dis. 24114.PubMedCrossRefGoogle Scholar
  75. 75.
    Zilz, N.D., L.J. Olson, and C.G. McGregor (2001). Treatment of post-transplant lymphoproliferative disorder with monoclonal CD20 antibody (rituximab) after heart transplantation.J. Heart Lung Transplant. 20770.PubMedCrossRefGoogle Scholar
  76. 76.
    Yang, J., Q. Tao, I.W. Flinn, P.G. Murray, L.E. Post, H. Maet al.(2000). Characterization of Epstein-Barr virus-infected B cells in patients with posttransplantation lymphoproliferative disease: Disappearance after rituximab therapy does not predict clinical response.Blood 964055.PubMedGoogle Scholar
  77. 77.
    Verschuuren, E.A., S.J. Stevens, G.W. van Imhoff, J.M. Middeldorp, C. de Boer, G. Koeteret al.(2002). Treatment of posttransplant lymphoproliferative disease with rituximab: The remission, the relapse, and the complication.Transplantation 73100.PubMedCrossRefGoogle Scholar
  78. 78.
    Berney, T., S. Delis, T. Kato, S. Nishida, N.K. Mittal, J. Madariagaet al.(2002). Successful treatment of post-transplant lymphoproliferative disease with prolonged rituximab treatment in intestinal transplant recipients.Transplantation 741000.PubMedCrossRefGoogle Scholar
  79. 79.
    Haddad, E., S. Paczesny, V. Leblond, J.M. Seigneurin, M. Stern, A. Achkaret al.(2001). Treatment of B-lymphoproliferative disorder with a monoclonal anti-interleukin-6 antibody in 12 patients: A multicenter phase 1–2 clinical trial.Blood 971590.PubMedCrossRefGoogle Scholar
  80. 80.
    Nalesnik, M.A., A. Zeevi, P.S. Randhawa, A. Faro, K.J. Spichty, A.J. Demetriset al.(1999). Cytokine mRNA profiles in Epstein-Barr virus-associated post-transplant lymphoproliferative disorders.Clin. Transplant. 1339.PubMedCrossRefGoogle Scholar
  81. 81.
    Setsuda, J., J. Teruya-Feldstein, N.L. Harris, J.A. Ferry, L. Sorbara, G. Guptaet al.(1999). Interleukin-18, interferon-gamma, IP-10, and Mig expression in Epstein-Barr virus-induced infectious mononucleosis and posttransplant lymphoproliferative disease.Am. J. Pathol. 155257.PubMedCrossRefGoogle Scholar
  82. 82.
    JohannessenI.S.M. Perera, A. Gallagher, P.A. Hopwood, J.A. Thomas, and D.H. Crawford (2002). Expansion in scid mice of Epstein-Barr virus-associated post-transplantation lymphoproliferative disease biopsy material.J. Gen. Viral. 83173.Google Scholar
  83. 83.
    RochfordR.M.J. Cannon, R.E. Sabbe, K. Adusumilli, G. Picchio, J.M. Glynnet al.(1997). Common and idiosyncratic patterns of cytokine gene expression by Epstein-Barr virus transformed human B cell lines.Viral Immunol. 10183.PubMedCrossRefGoogle Scholar
  84. 84.
    Wroblewski, J.M., A. Copple, L.P. Batson, C.D. Landers, and J.R. Yannelli (2002). Cell surface phenotyping and cytokine production of Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCLs).J. Immunol. Methods 26419.PubMedCrossRefGoogle Scholar
  85. 85.
    Barillari, G., C. Sgadari, C. Palladino, R. Gendelman, A. Caputo, C.B. Morriset al.(1999). Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi’s sarcoma via induction of basic fibroblast growth factor and the alpha v beta 3 integrin.J. Immunol. 1631929.PubMedGoogle Scholar
  86. 86.
    Gao, B., T.M. Saba, and M.F. Tsan (2002). Role of alpha(v)beta(3)-integrin in TNF-alpha-induced endothelial cell migration.Am. J. Physiol. Cell Physiol. 283C1196.PubMedGoogle Scholar
  87. 87.
    Sunderkotter, C., K. Steinbrink, M. Goebeler, R. Bhardwaj, and C. Sorg (1994). Macrophages and angiogenesis.J. Leukoc. Biol. 55410.PubMedGoogle Scholar
  88. 88.
    Sanceau, J., D.D. Boyd, M. Seiki, and B. Bauvois (2002). Interferons inhibit tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 activation via interferon regulatory factor-1 binding competition with NF-kappa B.J. Biol. Chem. 27735766.PubMedCrossRefGoogle Scholar
  89. 89.
    Skobe, M., R. Rockwell, N. Goldstein, S. Vosseler, and N.E. Fusenig (1997). Halting angiogenesis suppresses carcinoma cell invasion.Nat. Med. 31222.PubMedCrossRefGoogle Scholar
  90. 90.
    Ferrara, N. (1999). Molecular and biological properties of vascular endothelial growth factor.J. Mol. Med. 77527.PubMedCrossRefGoogle Scholar
  91. 91.
    Feldman, A.L., J. Friedl, T.E. Lans, S.K. Libutti, D. Lorang, M.S. Milleret al.(2002). Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts.Int. J. Cancer 99149.PubMedCrossRefGoogle Scholar
  92. 92.
    Bauvois, B., J. Dumont, C. Mathiot, and J.P. Kolb (2002). Production of matrix metalloproteinase-9 in early stage B-CLL: Suppression by interferons.Leukemia 16791.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang, J.H., Q.D. Wu, D. Bouchier-Hayes, and H.P. Redmond (2002). Hypoxia upregulates Bd-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.Cancer 942745.PubMedCrossRefGoogle Scholar
  94. 94.
    Hayakawa, Y., K. Takeda, H. Yagita, M.J. Smyth, L. Van Kaer, K. Okumuraet al.(2002). IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide.Blood 1001728.PubMedGoogle Scholar
  95. 95.
    Kasama, T., M. Muramatsu, K. Kobayashi, N. Yajima, F. Shiozawa, R. Hanaokaet al.(2002). Interaction of monocytes with vascular endothelial cells synergistically induces interferon gamma-inducible protein 10 expression through activation of specific cell surface molecules and cytokines.Cell. Immunol. 219131.PubMedCrossRefGoogle Scholar
  96. 96.
    Mosser, D.M. (2003). The many faces of macrophage activation.J. Leukoc. Biol. 73209.PubMedCrossRefGoogle Scholar
  97. 97.
    Coffman, R.L., K. Varkila, P. Scott, and R. Chatelain (1991). Role of cytokines in the differentiation of CD4+T-cell subsets in vivo.Immunol. Rev. 123189.PubMedCrossRefGoogle Scholar
  98. 98.
    Manetti, R., P. Parronchi, M.G. Giudizi, M.-P. Piccinni, E. Maggi, G. Trinchieriet al.(1993). Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Thl)-specific immune responses and inhibits the development of IL-4-producing Th cells.J. Exp. Med. 1771199.PubMedCrossRefGoogle Scholar
  99. 99.
    Seo, N., S. Hayakawa, and Y. Tokura (2002). Mechanisms of immune privilege for tumor cells by regulatory cytokines produced by innate and acquired immune cells.Semin. Cancer Biol. 12291.PubMedCrossRefGoogle Scholar
  100. 100.
    Kambayashi, T., E. Assarsson, A.E. Lukacher, H.G. Ljunggren, and P.E. Jensen (2003). Memory CD8(+) T cells provide an early source of IFN-gamma.J. Immunol. 1702399.PubMedGoogle Scholar
  101. 101.
    Roberts, A.B. (1999). TGF-beta signaling from receptors to the nucleus.Microbes Infect. 11265.PubMedCrossRefGoogle Scholar
  102. 102.
    Moustakas, A., K. Pardali, A. Gaal, and C.H. Heldin (2002). Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation.Immunol. Lett. 8285.PubMedCrossRefGoogle Scholar
  103. 103.
    Itoh, S., F. Itoh, M.J. Goumans, and R Ten Dijke (2000). Signaling of transforming growth factor-beta family members through Smad proteins.Eur. J. Biochem. 2676954.PubMedCrossRefGoogle Scholar
  104. 104.
    Langermans, J.A., P.H. Nibbering, M.E. Van Vuren-Van Der Hulst, and R. Van Furth (2001). Transforming growth factor-beta suppresses interferon-gamma-induced toxoplasmastatic activity in murine macrophages by inhibition of tumour necrosis factor-alpha production.Parasite Immunol. 23169.PubMedCrossRefGoogle Scholar
  105. 105.
    Ulloa, L., J. Doody, and J. Massague (1999). Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway.Nature 397710.PubMedCrossRefGoogle Scholar
  106. 106.
    BeattyP.R., S.M.Krams, and O.M. Martinez (1997). Involvement of II,-10 in the autonomous growth of EBVtransformed B cell lines.J. Immunol. 1584045.PubMedGoogle Scholar
  107. 107.
    Hirano, T., K. Ishihara, and M. Hibi (2000). Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors.Oncogene 192548.PubMedCrossRefGoogle Scholar
  108. 108.
    Cheung, W.C. and B. Van Ness (2002). Distinct IL-6 signal transduction leads to growth arrest and death in B cells or growth promotion and cell survival in myeloma cells.Leukemia 161182.PubMedCrossRefGoogle Scholar
  109. 109.
    Ratta, M., F. Fagnoni, A. Curti, R. Vescovini, R Sansoni, B. Olivieroet al.(2002). Dendritic cells are functionally defective in multiple myeloma: The role of interleukin-6.Blood 100230.PubMedCrossRefGoogle Scholar
  110. 110.
    Arendt, B.K., A. Velazquez-Dones, R.C. Tschumper, K.G. Howell, S.M. Ansell, T.E. Witziget al.(2002). Interleukin 6 induces monocyte chemoattractant protein-1 expression in myeloma cells.Leukemia 162142.PubMedCrossRefGoogle Scholar
  111. 111.
    Gado, K., G. Domjan, H. Hegyesi, and A. Falus (2000). Role of interleukin-6 in the pathogenesis of multiple myeloma.Cell Biol. Int. 24195.PubMedCrossRefGoogle Scholar
  112. 112.
    Zheng, C., D.R. Huang, S. Bergenbrant, A. Sundblad, A. Osterborg, M. Bjorkholmet al.(2000). Interleukin 6, tumour necrosis factor alpha, interleukin lbeta and Mterleukin 1 receptor antagonist promoter or coding gene polymorphisms in multiple myeloma.Br. J. Haematol. 10939.PubMedCrossRefGoogle Scholar
  113. 113.
    Dankbar, B., T. Padro, R. Leo, B. Feldmann, M. Kropff, R.M. Mesterset al.(2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma.Blood95, 2630.PubMedGoogle Scholar
  114. 114.
    Cohen, T., D. Nahari, L.W. Cerem, G. Neufeld, and B.Z. Levi (1996). Interleukin 6 induces the expression of vascular endothelial growth factor.J. Biol. Chem. 271736.PubMedCrossRefGoogle Scholar
  115. 115.
    Jones, K., C. Rivera, C. Sgadari, J. Franklin, E.E. Max, K. Bhatiaet al.(1995). Infection of human endothelial cells with Epstein-Barr virus.J. Exp. Med. 1821213.PubMedCrossRefGoogle Scholar
  116. 116.
    Eliopoulos, A.G., M. Stack, C.W. Dawson, K.M. Kaye, L. Hodgkin, S. Sihotaet al.(1997). Epstein-Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor-associated factors.Oncogene 142899.PubMedCrossRefGoogle Scholar
  117. 117.
    Swinnen, L.J. and R.I. Fisher (1993). OKT3 monoclonal antibodies induce interleukin-6 and interleukin-10: A possible cause of lymphoproliferative disorders associated with transplantation.Cure. Opin. Nephrol. Hypertens. 2670.CrossRefGoogle Scholar
  118. 118.
    Tosato, G., K. Jones, M.K. Breinig, H.P. McWilliams, and J.L. McKnight (1993). Interleukin-6 production in posttransplant lymphoproliferative disease.J. Clin. Invest. 912806.PubMedCrossRefGoogle Scholar
  119. 119.
    Diehl, S. and M. Rincon (2002). The two faces of IL-6 on ThliTh2 differentiation.Mol. Immunol. 39531.PubMedCrossRefGoogle Scholar
  120. 120.
    Durandy, A. (2001). Anti-B cell and anti-cytokine therapy for the treatment of post-transplant lymphoproliferative disorder: Past, present, and future.Transpl. Infect. Dis. 3104.PubMedCrossRefGoogle Scholar
  121. 121.
    Mauray, S., M.T. Fuzzati-Armentero, R Trouillet, M. Ruegg, G. Nicoloso, M. Hartet al.(2000). Epstein-Barr virus-dependent lymphoproliferative disease: Critical role of IL-6.Eur. J. Immunol. 302065.PubMedCrossRefGoogle Scholar
  122. 122.
    Howard, M. and A. O’Garra (1992). Biological properties of interleukin 10.Immunol. Today 13198.PubMedCrossRefGoogle Scholar
  123. 123.
    Burdin, N., E Rousset, and J. Banchereau (1997). B-cell-derived IL-10: Production and function.Methods 1198.PubMedCrossRefGoogle Scholar
  124. 124.
    Wakkach, A., E Cottrez, and H. Groux (2000). Can interleukin-10 be used as a true immunoregulatory cytokine?Eue Cytokine Netw. 11153.Google Scholar
  125. 125.
    Punnonen, J., R. de Waal Malefyt, P. van Vlasselaer, J.F. Gauchat, and J.E. de Vries (1993). IL-10 and viral IL-10 prevent IL-4-induced IgE synthesis by inhibiting the accessory cell function of monocytes.J. Immunol. 1511280.PubMedGoogle Scholar
  126. 126.
    Wang, L., E. Goillot, and R.I. Tepper (1994). IL-10 inhibits alloreactive cytotoxic T lymphocyte generation in vivo.Cell. Immunol. 159152.PubMedCrossRefGoogle Scholar
  127. 127.
    Bogdan, C., Y. Vodovotz, and C. Nathan (1991). Macrophage deactivation by interleukin 10.J. Exp. Med. 1741549.PubMedCrossRefGoogle Scholar
  128. 128.
    Fiorentino, D.F., A. Zlotnik, P. Vieira, T.R. Mosmann, M. Howard, K.W. Mooreet al.(1991). IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Thl cells.J. Immunol. 1463444.PubMedGoogle Scholar
  129. 129.
    Kiertscher, S.M., J. Luo, S.M. Dubinett, and M.D. Roth (2000). Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells.J. Immunol. 1641269.PubMedGoogle Scholar
  130. 130.
    Qin, Z., G. Noffz, M. Mohaupt, and T. Blankenstein (1997). Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells.J. Immunol. 159770.PubMedGoogle Scholar
  131. 131.
    Chen, N., Q. Gao, and E.H. Field (1995). Expansion of memory Th2 cells over Thl cells in neonatal primed mice.Transplantation 601187.PubMedGoogle Scholar
  132. 132.
    Cua, D.J., R.L. Coffman, and S.A. Stohlman (1996). Exposure to T helper 2 cytokines in vivo before encounter with antigen selects for T helper subsets via alterations in antigen-presenting cell function.J. Immunol. 1572830.PubMedGoogle Scholar
  133. 133.
    de Waal Malefyt, R., H. Yssel, and J.E. de Vries (1993). Direct effects of IL-10 on subsets of human CD4+T cell clones and resting T cells.J. Immunol. 150(11)4754.PubMedGoogle Scholar
  134. 134.
    De Wit, D., M. Van Mechelen, C. Zanin, J M Doutrelepont, T. Velu, C. Gerardet al.(1993). Preferential activation of Th2 cells in chronic graft-versus-host reaction.J. Immunol. 150361.PubMedGoogle Scholar
  135. 135.
    Erard, F., M.-T. Wild, M. Garcia-Sanz, and G. LeGros (1993). Switch of CD8 T Cells to noncytolytic CD8-CD4-cells that make TH2 cytokines and help B cells.Science 2601802.PubMedCrossRefGoogle Scholar
  136. 136.
    Chen, W.F. and A. Zlotnik (1991). IL-10: A novel cytotoxic T cell differentiation factor.J. Immunol. 147528.PubMedGoogle Scholar
  137. 137.
    Groux, H., M. Bigler, J.E. deVries, and M.-G. Roncarolo (1998). Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells.J. Immunol. 1603188.PubMedGoogle Scholar
  138. 138.
    Li, L., S. Sad, D. Kagi, and T.R. Mosmann (1997). CD8Tc1 and Tc2 cells secrete distinct cytokine patterns in vitro and in vivo but induce similar inflammatory reactions.J. Immunol. 1584152.PubMedGoogle Scholar
  139. 139.
    Prezzi, C., M.A. Casciaro, V. Francavilla, E. Schiaffella, L. Finocchi, L.V. Chircuet al.(2001). Virus-specific CD8(+) T cells with type 1 or type 2 cytokine profile are related to different disease activity in chronic hepatitis C virus infection.Eur. J. Immunol. 31894.PubMedCrossRefGoogle Scholar
  140. 140.
    Asseman, C., S. Mauze, M.W. Leach, R.L. Coffman, and F. Powrie (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation.J. Exp. Med. 190995.PubMedCrossRefGoogle Scholar
  141. 141.
    Chakraborty, N.G., L. Li, J.R. Sporn, S.H. Kurtzman, M.T. Ergin, and B. Mukherji (1999). Emergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: Implications in designing antigen-presenting cell-based tumor vaccines.J. Immunol. 1625576.PubMedGoogle Scholar
  142. 142.
    Ke, B., T. Ritter, H. Kato, Y. Zhai, J. Li, M. Lehmannet al.(2000). Regulatory cells potentiate the efficacy of IL-4 gene transfer by up-regulating Th2-dependent expression of protective molecules in the infectious tolerance pathway in transplant recipients.J. Immunol. 1645739.PubMedGoogle Scholar
  143. 143.
    Seo, N., Y. Tokura, M. Takigawa, and K. Egawa (1999). Depletion of IL-10- and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells.J. Immunol. 163242.PubMedGoogle Scholar
  144. 144.
    Huang, S., S.E. Ullrich, and M. Bar-Eli (1999). Regulation of tumor growth and metastasis by interleukin-10: The melanoma experience.J. Interferon Cytokine Res. 19697.PubMedCrossRefGoogle Scholar
  145. 145.
    Nakagomi, H., R. Dolcetti, M.T. Bejarano, P. Pisa, R. Kiessling, and M.G. Masucci (1994). The Epstein-Barr virus latent membrane protein-1 (LMP1) induces interleukin-10 production in Burkitt lymphoma lines.Int. J. Cancer 57240.PubMedCrossRefGoogle Scholar
  146. 146.
    Zeidler, R., G. EissnerP.Meissner, S. Uebel, R. Tampé, S. Laziset al.(1997). Downregulation of TAPI in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10.Blood 902390Google Scholar
  147. 147.
    Müller, A., L. Schmitt, M. Raftery, and G. Schönrich (1998). Paralysis of B7 co-stimulation through the effect of viral IL-10 on T cells as a mechanism of local tolerance induction.Eur. J. Immunol. 283488.PubMedCrossRefGoogle Scholar
  148. 148.
    Birkeland, S.A., K. Bendtzen, B. Moller, S. Hamilton-Dutoit, and H.K. Andersen (1999). Interleukin-10 and posttransplant lymphoproliferative disorder after kidney transplantation.Transplant. 67876.CrossRefGoogle Scholar
  149. 149.
    Randhawa, P., M. Nalesnik, J. Demetris, and A. Zeevi (1995). Interleukin-10 production by a B-cell line derived from human post-transplant lymphoproliferative disease.Hematol. Oncol. 1313.PubMedCrossRefGoogle Scholar
  150. 150.
    Baiocchi, R.A., M.E. Ross, J.C. Tan, C.-C. Chou, L. Sullivan, S. Haldaret al.(1995). Lymphomagenesis in the SCID-hu mouse involves abundant production of human interleukin-10.Blood85(4), 1063–1074.PubMedGoogle Scholar
  151. 151.
    Bejarano, M.T. and M.G. Masucci (1998). Interleukin-10 abrogates the inhibition of Epstein-Barr virus-induced B-cell transformation by memory T-cell responses.Blood 924256.PubMedGoogle Scholar
  152. 152.
    Martinez, O.M., J.C. Villanueva, L. Lawrence-Miyasaki, M.B. Quinn, K. Cox, and S.M. Krams (1995). Viral and immunologic aspects of Epstein-Barr virus infection in pediatric liver transplant recipients.Transplantation 59519.PubMedGoogle Scholar
  153. 153.
    Wakefield, L.M. andA.B.Roberts (2002). TGF-beta signaling: Positive and negative effects on tumorigenesis.Curr Opin. Genet. Dev. 1222.Google Scholar
  154. 154.
    Piek, E. and A.B. Roberts (2001). Suppressor and oncogenic roles of transforming growth factor-beta and its signaling pathways in tumorigenesis.Adv. Cancer Res. 831.PubMedCrossRefGoogle Scholar
  155. 155.
    GoldL.I.(1999). The role for transforming growth factor-beta (TGF-beta) in human cancer.Crit. Rev. Oncog. 10303.Google Scholar
  156. 156.
    Kelly, D.L. and A. Rizzino (1999). Growth regulatory factors and carcinogenesis: The roles played by transforming growth factor beta, its receptors and signaling pathways.Anticancer Res. 194791.PubMedGoogle Scholar
  157. 157.
    McCartney-Francis, N.L., M. Frazier-Jessen, and S.M. Wahl (1998). TGF-beta: A balancing act.Int. Rev. Immunol. 16553.PubMedCrossRefGoogle Scholar
  158. 158.
    Letterio, J.J. andA.B.Roberts (1998). Regulation of immune responses by TGF-beta.Annu. Rev. Immunol. 16137.Google Scholar
  159. 159.
    Prud’homme, G.J. and C.A. Piccirillo (2000). The inhibitory effects of transforming growth factor-beta-1 (TGF-betal) in autoimmune diseases.J. Autoimmun. 1423.PubMedCrossRefGoogle Scholar
  160. 160.
    King, C., J. Davies, R. Mueller, M.-S. Lee, T. Krahl, B. Yeunget al.(1998). TGF-bl alters APC preference, polarizing islet antigen responses toward a Th2 phenotype.Immunity 8601.PubMedCrossRefGoogle Scholar
  161. 161.
    Strobl, H. and W. Knapp (1999). TGF-betal regulation of dendritic cells.Microbes Infect. 11283.PubMedCrossRefGoogle Scholar
  162. 162.
    Seddon, B. and D. Mason (1999). Regulatory T cells in the control of autoimmunity: The essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4(+)CD45RC-cells and CD4(+)CD8(-) thymocytes.J. Exp. Med. 189279.PubMedCrossRefGoogle Scholar
  163. 163.
    Kezuka, T. and J.W. Streilein (2000). Analysis of in vivo regulatory properties of T cells activated in vitro by TGFbeta2-treated antigen presenting cells.Invest. Ophthalmol. Vis. Sci. 411410.PubMedGoogle Scholar
  164. 164.
    Yamagiwa, S., J.D. Gray, S. Hashimoto, and D.A. Horwitz (2001). A role for tgf-beta in the generation and expansion of cd4(+)cd25(+) regulatory t cells from human peripheral blood.J. Immunol. 1667282.PubMedGoogle Scholar
  165. 165.
    Shin, G.T., A. Khanna, R. Ding, V.K. Sharma, M. Lagman, B. Liet al.(1998). In vivo expression of transforming growth factor-betal in humans: Stimulation by cyclosporine.Transplantation 65313.PubMedCrossRefGoogle Scholar
  166. 166.
    Khanna, A., V. Cairns, and J.D. Hosenpud (1999). Tacrolimus induces increased expression of transforming growth factor-betal in mammalian lymphoid as well as nonlymphoid cells.Transplant. 67614.CrossRefGoogle Scholar
  167. 167.
    Khanna, A., S. Kapur, V. Sharma, B. Li, and M. Suthanthiran (1997). In vivo hyperexpression of transforming growth factor-betal in mice: Stimulation by cyclosporine.Transplantation 631037.PubMedCrossRefGoogle Scholar
  168. 168.
    Andjelic, S., A. Khanna, M. Suthanthiran, and J. Nikolic-Zugic (1997). Intracellular Cat+elevation and cyclosporin A synergistically induce TGF-beta 1-mediated apoptosis in lymphocytes.J. Immunol. 1582527.PubMedGoogle Scholar
  169. 169.
    Xu, J., J. Menezes, U. Prasad, and A. Ahmad (1999). Elevated serum levels of transforming growth factor betal in Epstein-Barr virus-associated nasopharyngeal carcinoma patients.Int. J. Cancer 84396.PubMedCrossRefGoogle Scholar
  170. 170.
    Tosato, G., J. Teruya-Feldstein, J. Setsuda, S.E. Pike, K.D. Jones, and E.S. Jaffe (1998). Post-transplant lymphoproliferative disease (PTLD): Lymphokine production and PTLD.Springer Semin. Immunopathol. 20405.PubMedCrossRefGoogle Scholar
  171. 171.
    Rochford, R., M.J. Cannon, R.E. Sabbe, K. Adusumilli, G. Picchio, J.M. Glynnet al.(1997). Common and idiosyncratic patterns of cytokine gene expression by Epstein-Barr virus transformed human B cell lines.Viral Immunol. 10183.PubMedCrossRefGoogle Scholar
  172. 172.
    Kumar, A., T. Rogers, A. Maizel, and S. Sharma (1991). Loss of transforming growth factor beta 1 receptors and its effects on the growth of EBV-transformed human B cells../.Immunol. 147998.Google Scholar
  173. 173.
    Cayrol, C. and E.K. Remington (1995). Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: Activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1.J. Virol. 694206.PubMedGoogle Scholar
  174. 174.
    Morrison, T.E., A. Mauser, A. Wong, J.P. Ting, and S.C. Kenney (2001). Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein.Immunity 15787.PubMedCrossRefGoogle Scholar
  175. 175.
    Cockfield, S.M. (2001). Identifying the patient at risk for post-transplant lymphoproliferative disorder.Transpl. Infect. Dis. 370.PubMedCrossRefGoogle Scholar
  176. 176.
    Penn, I. (2000). Post-transplant malignancy: The role of immunosuppression.Drug Saf. 23101.PubMedCrossRefGoogle Scholar
  177. 177.
    Swinnen, L.J. (2000). Transplantation-related lymphoproliferative disorder: A model for human immunodeficiency virus-related lymphomas.Semin. Oncol. 27402.PubMedGoogle Scholar
  178. 178.
    Hutchinson, I.V., D. Turner, D. Sankaran, M. Awad, V. Pravica, and P. Sinnott (1998). Cytokine genotypes in allograft rejection: Guidelines for immunosuppression.Transplant. Proc. 303991.PubMedCrossRefGoogle Scholar
  179. 179.
    Turner, D., S.C. Grant, N. Yonan, S. Sheldon, P.A. Dyer, P.J. Sinnottet al.(1997). Cytokine gene polymorphism and heart transplant rejection.Transplantation 64776.PubMedCrossRefGoogle Scholar
  180. 180.
    Bunnapradist, S. and S.C. Jordan (2000). The role of cytokines and cytokine gene polymorphism in T-cell activation and allograft rejection.Ann. Acad. Med. Singapore 29412.PubMedGoogle Scholar
  181. 181.
    Edwards-Smith, C.J., J.R. Jonsson, D.M. Purdie, A. Bansal, C. Shorthouse, and E.E. Powell (1999). Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa.Hepatology 30526.PubMedCrossRefGoogle Scholar
  182. 182.
    Yee, L.J., J. Tang, A.W. Gibson, R. Kimberly, D.J. Van Leeuwen, and R.A. Kaslow (2001). Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy for chronic hepatitis C infection.Hepatology 33708.PubMedCrossRefGoogle Scholar
  183. 183.
    Makela, S., M. Hurme, I. Ala-Houhala, J. Mustonen, A.M. Koivisto, J. Partanenet al.(2001). Polymorphism of the cytokine genes in hospitalized patients with Puumala hantavirus infection.Nephrol. Dial. Transplant. 161368.PubMedCrossRefGoogle Scholar
  184. 184.
    Nishimura, M., M. Matsuoka, M. Maeda, I. Mizuta, S. Mita, M. Uchinoet al.(2002). Association between interleukin-6 gene polymorphism and human T-cell leukemia virus type I associated myelopathy.Hum. Immunol. 63696.PubMedCrossRefGoogle Scholar
  185. 185.
    Helminen, M., N. Landenpohja, and M. Hurme (1999). Polymorphism of the interleukin-10 gene is associated with susceptibility to Epstein-Barr virus infection.J. Infect. Dis. 180496.PubMedCrossRefGoogle Scholar
  186. 186.
    Helminen, M.E., S. Kilpinen, M. Virta, and M. Hurme (2001). Susceptibility to primary Epstein-Barr virus infection is associated with interleukin-10 gene promoter polymorphism.J. Infect. Dis. 184777.PubMedCrossRefGoogle Scholar
  187. 187.
    Demeter, J., F. Porzsolt, S. Rämisch, D. Schmidt, M. Schmid, and G. Messer (1997). Polymorphism of the tumour necrosis factor-alpha and lymphotoxin-alpha genes in chronic lymphocytic leukaemia.Be J. Haematol. 97107.CrossRefGoogle Scholar
  188. 188.
    Warzocha, K., P. Ribeiro, J. Bienvenu, P. Roy, C. Charlot, D. Rigalet al.(1998). Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin’s lymphoma outcome.Blood 913574.PubMedGoogle Scholar
  189. 189.
    Wu, M.S., S.P. Huang, Y.T. Chang, C.T. Shun, M.C. Chang, M.T. Linet al.(2002). Tumor necrosis factor-alpha and interleukin-10 promoter polymorphisms in Epstein-Barr virus-associated gastric carcinoma.J. Infect. Dis. 185106.PubMedCrossRefGoogle Scholar
  190. 190.
    Foster, C.B., T. Lehrnbecher, S. Samuels, S. Stein, F. Mol, J.A. Metcalfet al.(2000). An 1L6 promoter polymorphism is associated with a lifetime risk of development of Kaposi sarcoma in men infected with human immunodeficiency virus.Blood 962562.PubMedGoogle Scholar
  191. 191.
    Barber, M.D., J.J. Powell, S.F. Lynch, K.C. Fearon, and J.A. Ross (2000). A polymorphism of the interleukin-1 beta gene influences survival in pancreatic cancer.Br. J. Cancer 831443.PubMedCrossRefGoogle Scholar
  192. 192.
    El-Omar, E.M., M. Carrington, W.H. Chow, K.E. McColl, J.H. Bream, H.A. Younget al.(2000). Interleukin-1 polymorphisms associated with increased risk of gastric cancer.Nature 404398.PubMedCrossRefGoogle Scholar
  193. 193.
    Hoffmann, S.C., E.M. Stanley, E.D. Cox, B.S. DiMercurio, D.E. Koziol, D.M. Harlanet al.(2002). Ethnicity greatly influences cytokine gene polymorphism distribution.Am. J. Transplant. 2560.PubMedCrossRefGoogle Scholar
  194. 194.
    Fishman, D., G. Faulds, R. Jeffery, V. Mohamed-Ali, J.S. Yudkin, S. Humphrieset al.(1998). The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis.J. Clin. Invest. 1021369.PubMedCrossRefGoogle Scholar
  195. 195.
    Perrey, C., V. Pravica, P.J. Sinnott, and I.V. Hutchinson (1998). Genotyping for polymorphisms in interferon-gamma, interleukin-10, transforming growth factor-beta I and tumour necrosis factor-alpha genes: A technical report.Transpl. Immunol. 6193.PubMedCrossRefGoogle Scholar
  196. 196.
    Cambien, F., S. Ricard, A. Troesch, C. Mallet, L. Generenaz, A. Evanset al.(1996). Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude CasTemoin de l’Infarctus du Myocarde (ECTIM) Study.Hypertension 28881.PubMedCrossRefGoogle Scholar
  197. 197.
    Awad, M.R., A. El-Gamel, P. Hasleton, D.M. Turner, P.J. Sinnott, and I.V. Hutchinson (1998). Genotypic variation in the transforming growth factor-betal gene: Association with transforming growth factor-betal production, fibrotic lung disease, and graft fibrosis after lung transplantation.Transplantation 661014.PubMedCrossRefGoogle Scholar
  198. 198.
    Turner, D.M., S.C. Grant, W.R. Lamb, P.E. Brenchley, P.A. Dyer, P.J. Sinnottet al.(1995). A genetic marker of high TNF-alpha production in heart transplant recipients.Transplantation 601113.PubMedCrossRefGoogle Scholar
  199. 199.
    Pravica, V., A. Asderakis, C. Perrey, A. Hajeer, P.J. Sinnott, and I.V. Hutchinson (1999). In vitro production of IFNgamma correlates with CA repeat polymorphism in the human IFN-gamma gene.Eur. J. Immunogenet. 261.PubMedCrossRefGoogle Scholar
  200. 200.
    Hoffmann, S.C., E.M. Stanley, E. Darrin Cox, N. Craighead, B.S. DiMercurio, D.E. Koziolet al.(2001). Association of cytokine polymorphic inheritance and in vitro cytokine production in anti-CD3/CD28stimulated peripheral blood lymphocytes.Transplantation 721444.PubMedCrossRefGoogle Scholar
  201. 201.
    Pravica, V., C. Perrey, A. Stevens, J.H. Lee, and I.V. Hutchinson (2000). A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: Absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production.Hum. Immunol. 61863.PubMedCrossRefGoogle Scholar
  202. 202.
    VanBuskirk, A.M., V. Malik, D. Xia, and R.P. Pelletier (2001). A gene polymophism associated with post-transplant lymphoproliferative disorder (PTLD).Transplant. Proc.33, 1834.PubMedCrossRefGoogle Scholar
  203. 203.
    Baiocchi, R.A. and M.A. Caligiuri (1994). Low-dose interleukin 2 prevents the development of Epstein—Barr virus (EBV)-associated lymphoproliferative disease in scid/scid mice reconstituted i.p. with EBV-seropositive human peripheral blood lymphocytes.Proc. Natl. Acad. Sci. USA 915577.PubMedCrossRefGoogle Scholar
  204. 204.
    Picchio, G.R., R. Kobayashi, M. Kirven, S.M. Baird, T.J. Kipps, and D.E. Mosier (1992). Heterogeneity among Epstein—Barr virus-seropositive donors in the generation of immunoblastic B-cell lymphomas in SCID mice receiving human peripheral blood leukocyte grafts.Cancer Res.52, 2468.PubMedGoogle Scholar
  205. 205.
    Johannessen, I., M. Asghar, and D.H. Crawford (2000). Essential role for T cells in human B-cell lymphoproliferative disease development in severe combined immunodeficient mice.Br. J. Haematol. 109600.PubMedCrossRefGoogle Scholar
  206. 206.
    Veronese, M.A., A. Veronesi, E. D’Andrea, A. Del Mistro, S. Indraccolo, M.R. Mazzaet al.(1992). Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice. I. T lymphocyte requirement for B cell tumor generation.J. Exp. Med. 1761763.PubMedCrossRefGoogle Scholar
  207. 207.
    Coppola, V., A. Veronesi, S. Indraccolo, E Calderazzo, M. Mion, S. Minuzzoet al.(1998). Lymphoproliferative disease in human peripheral blood mononuclear cell-injected SCID mice. IV. Differential activation of human Th 1 and Th2 lymphocytes and influence of the atopic status on lymphoma development.J. Immunol. 1602514.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Anne M. VanBuskirk
    • 1
  1. 1.Department of Surgery, Division of Surgical OncologyThe Ohio State UniversityColumbusUSA

Personalised recommendations