Dendritic Cells in Transplantation: Origin, Immune Activation, and Allograft Tolerance

  • Kena A. Swanson
  • David S. Wilkes


For the past 30 years, since their discovery, dendritic cells (DCs) have been the focus of many studies that outline the critical role of DCs in activation and, more recently, regulation of the immune response. As will be discussed in this chapter, DCs are specialized antigen-presenting cells (APCs) that are integral to both the initiation of allograft rejection and the induction and maintenance of transplant tolerance. Both donor and recipient DCs contribute to the rejection response but it seems to be the DCs of the recipient that participate in both the acute and chronic phases of rejection. Therefore, these DCs are an ideal target for manipulation of the rejection response in favor of promoting tolerance induction. Before discussing these developing issues, we must first understand how these cells were first discovered and how we began to understand their importance in transplantation.


Dendritic Cell Dendritic Cell Subset Transplant Tolerance Mixed Leukocyte Reaction Tryptophan Catabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fearon, D.T. and R.M. Locksley (1996). The instructive role of innate immunity in the acquired immune response.Science272(5258), 50–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Akira, S., K. Takeda, and T. Kaisho (2001). Toll-like receptors: Critical proteins linking innate and acquired immunity.Nat. Immunol.2(8), 675–680.PubMedCrossRefGoogle Scholar
  3. 3.
    Lipscomb, M.F. and B.J. Masten (2002). Dendritic cells: Immune regulators in health and disease.Physiol. Rev.82(1), 97–130.PubMedGoogle Scholar
  4. 4.
    Dieu-Nosjean, M. et al. (1999). Regulation of dendritic cell trafficking: A process that involves the participation of selective chemokines.J. Leuk. Biol.66, 252–262.Google Scholar
  5. 5.
    Gallucci, S. and P. Matzinger (2001). Danger signals: SOS to the immune system.Curr. Opin. Immunol.13(1), 114–119.PubMedCrossRefGoogle Scholar
  6. 6.
    Luster, A.D. (2002). The role of chemokines in linking innate and adaptive immunity.Curr. Opin. Immunol.14, 129–135.PubMedCrossRefGoogle Scholar
  7. 7.
    Sozzani, al.(1998). Differential regulation of chemokine receptors during dendritic cell maturation: A model for their trafficking properties.J. Immunol.161, 1083.Google Scholar
  8. 8.
    Langenkamp, al.(2000). Kinetics of dendritic cell activation: Impact on priming TH1, TH2 and nonpolarized T cells.Nat. Immunol.1, 311–316.PubMedCrossRefGoogle Scholar
  9. 9.
    Kalinski, al.(1997). IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2promote type 2 cytokine production in maturing human naive T helper cells.J. Immunol.159, 28–35.PubMedGoogle Scholar
  10. 10.
    Palucka, K. and J. Banchereau (1999). Dendritic cells: A link between innate and adaptive immunity.J. Clin. Immunol.19(1), 12–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Steinman, R.M. and Z.A. Cohn (1973). Identification of a novel cell type in peripheral lymphoid organs of mice.I. Morphology, quantitation, tissue distribution.J. Exp. Med.137(5), 1142–1162.CrossRefGoogle Scholar
  12. 12.
    Steinman, R.M., J. Adams, and Z. Cohn (1975). Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen.J. Exp. Med.141, 804–820.PubMedGoogle Scholar
  13. 13.
    Steinman, R.M. and Z. Cohn (1974). Identification of a novel cell type in peripheral lymphoid organs of mice.II. Functional properties in vitro.J. Exp. Med.139, 380–397.PubMedCrossRefGoogle Scholar
  14. 14.
    Banchereau, J., F. Briere, and C. Caux (2000). Immunobiology of dendritic cells.Annu. Rev. Immunol.18, 767.PubMedCrossRefGoogle Scholar
  15. 15.
    Banchereau, J. and R.M. Steinman (1998). Dendritic cells and the control of immunity.Nature392(6673), 245–252.PubMedCrossRefGoogle Scholar
  16. 16.
    Geijtenbeek, al.(2000). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses.Cell100, 575–585.PubMedCrossRefGoogle Scholar
  17. 17.
    Granucci, al.(2003). Early IL-2 production by mouse dendritic cells is the result of microbial-induced priming.J. Immunol.170(10), 5075–5081.PubMedGoogle Scholar
  18. 18.
    Steinman, R.M. (1991). The dendritic cell system and its role in immunogenicity.Annu Rev. Immunol.9, 271–296.PubMedCrossRefGoogle Scholar
  19. 19.
    Shortman, K. and Y.-J. Liu (2002). Mouse and human dendritic cell subtypes.Nat. Rev. Immunol.2, 151–161.PubMedCrossRefGoogle Scholar
  20. 20.
    Inaba, al.(1993). Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow.Proc. Natl. Acad. Sci. USA90(7), 3038–3042.PubMedCrossRefGoogle Scholar
  21. 21.
    Bjorck, P. and P. Kincade (1998). CD19+pro-B cells can give rise to dendritic cells in vitro.J. Immunol.161, 5795–5799.PubMedGoogle Scholar
  22. 22.
    Izon, D. (2001). A common pathway for dendritic cell and early B cell development.J. Immunol.167, 1387–1392.PubMedGoogle Scholar
  23. 23.
    Ardavin, al.(1993). Thymic dendritic cells and T cells develop simultaneously within the thymus from a common precursor population.Nature362, 761–763.PubMedCrossRefGoogle Scholar
  24. 24.
    Ardavin, C. and K. Shortman (1992). Cell surface marker analysis of mouse thymic dendritic cells.Eur. J. Immunol.22(3), 859–862.PubMedCrossRefGoogle Scholar
  25. 25.
    Manz, al.(2001). Dendritic cell potentials of early lymphoid and myeloid progenitors.Blood97(11), 3333–3341.PubMedCrossRefGoogle Scholar
  26. 26.
    Traver, al.(2000). Development of CD8alpha-positive dendritic cells from a common myeloid progenitor.Science290(5499), 2152–2154.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu, al.(2001). Development of thymic and splenic dendritic cell populations from different hemopoietic precursors.Blood98(12), 3376–3382.PubMedCrossRefGoogle Scholar
  28. 28.
    Kamath, al.(2000). The development, maturation, and turnover rate of mouse spleen dendritic cell populations.J. Immunol.165, 6762–6770.PubMedGoogle Scholar
  29. 29.
    Strobl, al.(1998). Identification of CD68+lin-peripheral blood cells with dendritic precursor characteristics.J. Immunol.161, 740–748.PubMedGoogle Scholar
  30. 30.
    Masten, al.(1997). Characterization of accessory molecules in murine lung dendritic cell function: Roles for CD80, CD86, CD54, and CD40L.Am. J. Respir. Cell Mol. Biol.16(3), 335–342.PubMedGoogle Scholar
  31. 31.
    Woo, al.(1994). Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells.Transplantation58(4), 484–491.PubMedCrossRefGoogle Scholar
  32. 32.
    O’Connell, al.(2000). Phenotypic and functional characterization of mouse hepatic CD8 alpha+ lymphoid-related dendritic cells.J. Immunol.165(2), 795–803.PubMedGoogle Scholar
  33. 33.
    Leenen, al.(1998). Heterogeneity of mouse spleen dendritic cells: In vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover.J. Immunol.160, 2166–2173.PubMedGoogle Scholar
  34. 34.
    Garrigan, al.(1996). Functional comparison of spleen dendritic cells and dendritic cells cultured in vitro from bone marrow precursors.Blood88(9), 3508–3512.PubMedGoogle Scholar
  35. 35.
    Martin, al.(2000). Concept of lymphoid versus myeloid dendritic cell lineages revisited: Both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors.Blood96(7), 2511–2519.PubMedGoogle Scholar
  36. 36.
    Vremec, al.(2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen.J. Immunol.164(6), 2978–2986.PubMedGoogle Scholar
  37. 37.
    Zou, G. and Y. Tam (2002). Cytokines in the generation and maturation of dendritic cells: Recent advances.Eur. Cytokine. Netw.13(2), 186–199.Google Scholar
  38. 38.
    Inaba, al.(1998). Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells.J. Exp. Med.188(11), 2163–2173.PubMedCrossRefGoogle Scholar
  39. 39.
    Sallusto, F. and A. Lanzavecchia (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage-colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor alpha. ZExp. Med.179, 1109–1118.CrossRefGoogle Scholar
  40. 40.
    Romani, al.(1994). Proliferating dendritic cell progenitors in human blood.J. Exp. Med.180(1), 83–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Chomarat, P., M. Rybak, and J. Banchereau (1998). Interleukin-4. In Angus W. Thomson and Michael T. Lotze (eds.)The Cytokine HandbookVol. 3. Elsevier Ltd, Oxford. pp. 133–174.Google Scholar
  42. 42.
    Quesniaux, V.F.J. and T.C. Jones, (1998). Granulocyte-macrophage colony stimulating factor. In Angus W. Thomson and Michael T. Lotze (eds.)The Cytokine HandbookVol. 3. Elsevier Ltd, Oxford. pp. 637–670.Google Scholar
  43. 43.
    Holgate, S. (2000). Epithelial damage and response.Clin. Exp. Allergy.30(Suppl 1), 37–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Metcalf, al.(1987). Hemopoietic responses in mice injected with purified recombinant murine GM-CSF.Exp. Hematol.15, 1–9.Google Scholar
  45. 45.
    Witmer-Pack, al.(1987). Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.J. Exp. Med.166(5), 1484–1498.PubMedCrossRefGoogle Scholar
  46. 46.
    Inaba, al.(1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.J. Exp. Med.176(6), 1693–1702.PubMedCrossRefGoogle Scholar
  47. 47.
    Caux, al.(1992). GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells.Nature360(6401), 258–261.PubMedCrossRefGoogle Scholar
  48. 48.
    Sallusto, F. and A Lanzavecchia (1995). Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen in the MHC class II compartment: Downregulation by cytokines and bacterial products.J. Exp. Med.182, 389.PubMedCrossRefGoogle Scholar
  49. 49.
    Weigel, al.(2002). Comparative analysis of murine marrow-derived dendritic cells generated by F1t3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses.Blood100(12), 4169–4176.PubMedCrossRefGoogle Scholar
  50. 50.
    Gitlitz, al.(2003). Phase I trial of granulocyte macrophage-colony stimulating factor and interleukin-4 as a combined immunotherapy for patients with cancer.J. Immunother.26(2), 171–178.PubMedCrossRefGoogle Scholar
  51. 51.
    Randolph, al.(1998). Differentiation of monocytes into dendritic cells in a model of transendothelial traffickingScience282(5388), 480–483.PubMedCrossRefGoogle Scholar
  52. 52.
    Dauer, al.(2003). Mature dendritic cells derived from human monocytes within 48 hours: A novel strategy for dendritic cell differentiation from blood precursors.J. Immunol.170, 4069–4076.PubMedGoogle Scholar
  53. 53.
    Shurin, M.R., C. Esche, and M.T. Lotze (1998). FLT3: Receptor and ligand. Biology and potential clinical application.Cytokine Growth Factor Rev.9(1), 37–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Maraskovsky, al.(1997). Dramatic numerical increase of functionally mature dendritic cells in FLT3 ligand-treated mice.Adv. Exp. Med. Biol.417, 33–40.PubMedGoogle Scholar
  55. 55.
    Masurier, al.(1999). Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: Implications for anti-tumoral cell therapy.Immunology96(4), 569–577.PubMedCrossRefGoogle Scholar
  56. 56.
    Lyman, al.(1993). Molecular cloning of a ligand for the flt3/flk2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells.Cell75, 1157–1167.PubMedCrossRefGoogle Scholar
  57. 57.
    Lyman, al.(1994). Cloning of the human homologue of the murine flt3 ligand: A growth factor for early hematopoietic progenitor cells.Blood83, 2795–2801.PubMedGoogle Scholar
  58. 58.
    Lyman, al.(1995). Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs.Oncogene10, 149–157.PubMedGoogle Scholar
  59. 59.
    Lyman, al.(1995). Structural analysis of human and mutine flt3 ligand generated by alternative splicing of mRNAs.Oncogene11, 1165–1172.PubMedGoogle Scholar
  60. 60.
    Gabbianelli, al.(1995). Multi-level effects of Flt3 ligand on human hematopoiesis: Expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors.Blood86, 1661.PubMedGoogle Scholar
  61. 61.
    Jacobsen, al.(1996). Ability of flt3 ligand to stimulate the in vitro growth of primitive marine hematopoietic progenitors is potently and directly inhibited by transforming growth factor-beta and tumor necrosis factor-alpha.Blood87(12), 5016–5026.PubMedGoogle Scholar
  62. 62.
    Maraskovsky, al.(1996). Dramatic increase in the numbers of functionally mature dendritic cells in F1t3 ligand-treated mice: Multiple dendritic cell subpopulations identified.J. Exp. Med.184(5), 1953–1962.PubMedCrossRefGoogle Scholar
  63. 63.
    Shurin, al.(1997). FLT3 ligand induces the generation of functionally active dendritic cells in mice.Cell. Immunol.179(2), 174–184.PubMedCrossRefGoogle Scholar
  64. 64.
    Pulendran, al.(1997). Developmental pathways of dendritic cells in vivo: Distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice.J. Immunol.159(5), 2222–2231.PubMedGoogle Scholar
  65. 65.
    O’Keeffe, al.(2002). Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice.Blood99(6), 2122–2130.PubMedCrossRefGoogle Scholar
  66. 66.
    Miller, al.(2003). Murine flt3 ligand expands distinct dendritic cells with both tolerogenic and immunogenic properties.J. Immunol.170(7), 3554–3564.PubMedGoogle Scholar
  67. 67.
    Vremec, al.(1992). The surface phenotype of dendritic cells purified from mouse thymus and spleen: Investigation of the CD8 expression by a subpopulation of dendritic cells.J. Exp. Med.176(1), 47–58.PubMedCrossRefGoogle Scholar
  68. 68.
    Suss, G. and K. Shortman (1996). A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis.J. Exp. Med.183, 1789–1796.PubMedCrossRefGoogle Scholar
  69. 69.
    Inaba, al.(1997). High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes.J. Exp. Med.186(5), 665–672.PubMedCrossRefGoogle Scholar
  70. 70.
    Kronin, al.(1996). A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production.J. Immunol.157, 3819–3827.PubMedGoogle Scholar
  71. 71.
    Kronin, al.(1997). Are CD8+ dendritic cells (DC) veto cells? The role of CD8 on DC in DC development and in the regulation of CD4 and CD8 T cell responses.Int. Immunol.9(7), 1061–1064.PubMedCrossRefGoogle Scholar
  72. 72.
    Kronin, al.(2001). Differential effect of CD8(+) and CD8(-) dendritic cells in the stimulation of secondary CD4(+) T cells.Int. Immunol.13(4), 465–473.PubMedCrossRefGoogle Scholar
  73. 73.
    Zamoyska, R. (1994). The CD8 coreceptor: One chain good, two chains better.Immunity1, 243–246.PubMedCrossRefGoogle Scholar
  74. 74.
    Gao, G.F. and B.K. Jakobsen (2000). Molecular interactions of coreceptor CD8 and MHC class I: The molecular basis for functional coordination with the T-cell receptor.Immunol. Today21(12), 630–636.PubMedCrossRefGoogle Scholar
  75. 75.
    Garcia, al.(1996). CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes.Nature384, 577–581.PubMedCrossRefGoogle Scholar
  76. 76.
    Kern, al.(1999). Expression, purification, and functional analysis of murine ectodomain fragments of CD8aa and CD8aß dimers.J. Biol. Chem.274, 27237–27243.PubMedCrossRefGoogle Scholar
  77. 77.
    Bosselut, al.(2000). Role of CD813 domains in CD8 coreceptor function: Importance for MHC I binding, signaling, and positive selection of CD8+T cells in the thymus.Immunity12, 409–418.PubMedCrossRefGoogle Scholar
  78. 78.
    Leishman, al.(2001). T cell responses modulated through interaction between CD8aa and the nonclassical MHC class I molecule.Science294, 1936–1939.PubMedCrossRefGoogle Scholar
  79. 79.
    Cella, M., E Sallusto, and A Lanzavecchia (1997). Origin, maturation and antigen presenting function of dendritic cells.Curr. Opin. Immunol.9, 10–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Hart, D. (1997). Dendritic cells: Unique leukocyte populations which control the primary immune response.Blood90, 3245–3287.PubMedGoogle Scholar
  81. 81.
    Coyle, A. and J. Gutierrez-Ramos (2001). The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T-cell function.Nat. Immunol.2, 203–209.PubMedCrossRefGoogle Scholar
  82. 82.
    Granucci, al.(2002). IL-2 mediates adjuvant effect of dendritic cells.Trends Immunol.23(4), 169–173.PubMedCrossRefGoogle Scholar
  83. 83.
    Ridge, J., F.D. Rosa, and R. Matzinger (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper cell and a T-killer cell.Nature393, 474–478.PubMedCrossRefGoogle Scholar
  84. 84.
    Swiggard, al.(1995). DEC-205, a 205-kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: Purification, characterization, and N-terminal amino acid sequence.Cell. Immunol.165(2), 302–311.PubMedCrossRefGoogle Scholar
  85. 85.
    Kronin, al.(2000). DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses.Int. Immunol.12(5), 731–735.PubMedCrossRefGoogle Scholar
  86. 86.
    Winkel, al.(1994). CD4 and CD8 expression by human and mouse thymic dendritic cells.Immunol. Lett.40(2), 93–99.PubMedCrossRefGoogle Scholar
  87. 87.
    Grouard, al.(1997). The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand.J. Exp. Med.185, 1101–1111.PubMedCrossRefGoogle Scholar
  88. 88.
    Martin, al.(2002). Characterization of a new subpopulation of mouse CD8alpha+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential.Blood100(2), 383–390.PubMedCrossRefGoogle Scholar
  89. 89.
    Asselin-Paturel, al.(2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology.Nat. Immunol.2, 1144.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakano, H., M. Yanagita, and M. Gunn (2001). CD11c+8220+Gr-1+cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells.J. Exp. Med.194, 1171.PubMedCrossRefGoogle Scholar
  91. 91.
    Krug, al.(2001). Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plas-macytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12.Eur. J. Immunol.31(1), 3026–3037.PubMedCrossRefGoogle Scholar
  92. 92.
    Smedt, al.(1996). Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo.J. Exp. Med.184, 1413–1424.PubMedCrossRefGoogle Scholar
  93. 93.
    Hochrein, al.(2001). Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets.J. Immunol.166(9), 5448–5455.PubMedGoogle Scholar
  94. 94.
    O’Keeffe, al.(2002). Mouse plasmacytoid cells: Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus.J. Exp. Med.196(10), 1307–1319.PubMedCrossRefGoogle Scholar
  95. 95.
    Hart, D. and J. Fabre (1981). Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain.J. Exp. Med.154, 347–361.PubMedCrossRefGoogle Scholar
  96. 96.
    Steiniger, B., J. Klempnauer, and K. Wonigeit (1984). Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart, and kidney.Transplantation38, 169–174.PubMedCrossRefGoogle Scholar
  97. 97.
    Sato, al.(1998). Maturation of rat dendritic cells during intrahepatic translocation evaluated using monoclonal antibodies and electron microscopy.Cell Tissue Res.294, 503–514.PubMedCrossRefGoogle Scholar
  98. 98.
    Morelli, al.(2000). Preferential induction of Thl responses by functionally mature hepatic (CD8alphaand CD8alpha+) dendritic cells: Association with conversion from liver transplant tolerance to acute rejection.Transplantation69(12), 2647–2657.PubMedCrossRefGoogle Scholar
  99. 99.
    Lian, al.(2003). Heterogeneity of dendritic cells in the mouse liver: Identification and characterization of four distinct populations.J. Immunol.170, 2323–2330.PubMedGoogle Scholar
  100. 100.
    Siegal, F. et al.(1999). The nature of the principal type I interferon-producing cells in human blood.Science284, 1835.PubMedCrossRefGoogle Scholar
  101. 101.
    Bjorck, P. (2001). Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice.Blood98(13), 3520–3526.PubMedCrossRefGoogle Scholar
  102. 102.
    Holt, al.(1989). Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium.Clin. Exp. Allergy19(6), 597–601.PubMedCrossRefGoogle Scholar
  103. 103.
    Schon-Hegrad, al.(1991). Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways.J. Exp. Med.173(6), 1345–1356.PubMedCrossRefGoogle Scholar
  104. 104.
    Holt, P.G., M.A. Schon-Hegrad, and J. Oliver (1988). MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations.J. Exp. Med.167(2), 262–274.PubMedCrossRefGoogle Scholar
  105. 105.
    Holt, P.G. (2000). Antigen presentation in the lung.Am. J Respir. Crit. Care Med.162(4 Pt 2), S151–S156.Google Scholar
  106. 106.
    Cochand, al.(1999). Human lung dendritic cells have an immature phenotype with efficient mannose receptors.Am. J. Respir. Cell Mol. Biol.21(5), 547–554.PubMedGoogle Scholar
  107. 107.
    Dodge, al.(2003). IL-6 production by pulmonary dendritic cells impedes Thl immune responses.J. Immunol.170, 4457–4464.PubMedGoogle Scholar
  108. 108.
    Valdez, al.(2002). Major histocompatibility complex class II presentation of cell-associated antigen is mediated by CD8alpha+ dendritic cells in vivo.J. Exp. Med.195(6), 683–694.PubMedCrossRefGoogle Scholar
  109. 109.
    Julia, al.(2002). A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cell long after antigen exposure.Immunity16(2), 271–283.PubMedCrossRefGoogle Scholar
  110. 110.
    van Rijt, al.(2002). Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD3lhiLy-6Cneg bone marrow precursors in a mouse model of asthma.Blood100(10), 3663–3671.PubMedCrossRefGoogle Scholar
  111. 111.
    Holt, al.(1994). Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways.J. Immunol.153(1), 256–261.PubMedGoogle Scholar
  112. 112.
    Kurts, al.(1997). Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells.J. Exp. Med.186, 239–245.PubMedCrossRefGoogle Scholar
  113. 113.
    Huang, al.(2000). Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis (EAE) in Lewis rats.Clin. Exp. Immunol.122(3), 437–444.PubMedCrossRefGoogle Scholar
  114. 114.
    Constant, S., K. Lee, and K. Bottomly (2000). Site of antigen delivery can influence T cell priming: Pulmonary environment promotes preferential Th2-type differentiation.Eur. J. Immunol.30, 840.PubMedCrossRefGoogle Scholar
  115. 115.
    Kuchroo, al.(1995). B7–1 and B7–1 costimulatory molecules activate differentially the Thl/Th2 development pathways: Application to autoimmune disease therapy.Cell80, 7–1.PubMedCrossRefGoogle Scholar
  116. 116.
    Straw, al.(2003). CD154 plays a central role in regulating dendritic cell activation during infections that induce Thl or Th2 responses.J. Immunol.170(2), 727–734.PubMedGoogle Scholar
  117. 117.
    Keane-Myers, al.(1997). B7–CD28/CTLA-4 costimulatory pathways are required for the development of the T helper cell 2-mediated allergic airway responses to inhaled antigens.J. Immunol.158, B7–CD28.PubMedGoogle Scholar
  118. 118.
    Sertl, al.(1986). Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura.J. Exp. Med.163(2), 436–451.PubMedCrossRefGoogle Scholar
  119. 119.
    Gong, al.(1992). Intraepithelial airway dendritic cells: A distinct subset of pulmonary dendritic cells obtained by microdissection.J. Exp. Med.175(3), 797–807.PubMedCrossRefGoogle Scholar
  120. 120.
    Nicod, L.P., L. Cochand, and D. Dreher (2000). Antigen presentation in the lung: Dendritic cells and macrophages.Sarcoidosis Vasc. Diffuse Lung Dis.17, 246–255.PubMedGoogle Scholar
  121. 121.
    Vermaelen, al.(2001). Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes.J. Exp. Med.193(1), 51–60.PubMedCrossRefGoogle Scholar
  122. 122.
    Lambrecht, al.(2000). Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation.J. Clin. Invest.106, 551–559.PubMedCrossRefGoogle Scholar
  123. 123.
    Geppert, T. and P. Lipsky (1987). Dissection of the antigen presenting function of tissue cells induced to express HLA-DR by gamma interferon.J. Rheumatol.14, 59–62.Google Scholar
  124. 124.
    Weinberg, D. and E. Unanue (1981). Antigen-presenting function of alveolar macrophages: Uptake and presentation of Listeria monocytogenes.J. Immunol.126, 794–799.PubMedGoogle Scholar
  125. 125.
    Upham, al(1995). Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion.Immunology84, 142–147.PubMedGoogle Scholar
  126. 126.
    Marietta, al.(1988). Macrophage oxidation of L-arginine to nitrate and nitrite: Nitric oxide is an intermediate.Biochemistry27, 8706.CrossRefGoogle Scholar
  127. 127.
    Roth, M. and S. Golub (1993). Human pulmonary macrophages utilize prostaglandins and transforming growth factor betal to suppress lymphocyte activation.J. Leukoc. Biol.53, 366.PubMedGoogle Scholar
  128. 128.
    Thepen, T., G. Kraal, and P.G. Holt (1994). The role of alveolar macrophages in regulation of lung inflammation.Ann. N. Y. Acad. Sci.725, 200–206.PubMedCrossRefGoogle Scholar
  129. 129.
    Boehringer, al.(1999). Differential regulation of tumour necrosis factor-a (TNF-a) and interleukin-10 (IL-10) secretion by protein kinase and phosphatase inhibition in human alveolar macrophages.Eur. Cytokine Netw.10, 211–217.PubMedGoogle Scholar
  130. 130.
    Holt, al.(1993). Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages.J. Exp. Med.177(2), 397–407.PubMedCrossRefGoogle Scholar
  131. 131.
    Thepen, T., N.V. Rooijen, and G. Kraal, (1989). Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice.J. Exp. Med.170, 499–509.PubMedCrossRefGoogle Scholar
  132. 132.
    Koch, al.(1996). High level IL-12 production by murine dendritic cells: Upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. IExp. Med.184, 741–746.CrossRefGoogle Scholar
  133. 133.
    Armstrong, al.(1994). Regulation of the immunostimulatory activity of rat pulmonary interstitial dendritic cells by cell-cell interactions and cytokines.Am. J. Respir. Cell Mol. Biol.11(6), 682–691.PubMedGoogle Scholar
  134. 134.
    Bowers, W., M. Ruhoff, and E. Goodell (1990). Conditioned medium from activated rat macrophages and the recombinant factors, IL-lb and GM-CSF, enhance the accessory activity of dendritic cells.Immunobiology180, 362–384.PubMedCrossRefGoogle Scholar
  135. 135.
    Tsitoura, al.(2000). Mechanisms preventing allergen-induced airways hyperreactivity: Role of tolerance and immune deviation.J. Allergy Clin. Immunol.106, 239–246.PubMedCrossRefGoogle Scholar
  136. 136.
    Tsitoura, al.(1999). Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. JImmunol.163, 2592–2600.PubMedGoogle Scholar
  137. 137.
    Akbari, O., R.H. DeKruyff, and D.T. Umetsu (2001). Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen.Nat. Immunol.2(8), 725–731.PubMedCrossRefGoogle Scholar
  138. 138.
    Mellor, A.L. and D.H. Munn (2003). Tryptophan catabolism and regulation of adaptive immunity.J. Immunol.170(12), 5809–5813.PubMedGoogle Scholar
  139. 139.
    Constant, al.(2002). Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ.J. Clin. Invest.110(10), 1441–1448.PubMedGoogle Scholar
  140. 140.
    Yoshida, R. and O. Hayaishi (1978). Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide.Proc. Natl. Acad. Sci. USA75(8), 3998–4000.PubMedCrossRefGoogle Scholar
  141. 141.
    Yoshida, al.(1979). Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection.Proc. Natl. Acad. Sci. USA76(8), 4084–4086.PubMedCrossRefGoogle Scholar
  142. 142.
    Yoshida, al.(1981). Induction of pulmonary indoleamine 2,3-dioxygenase by interferon.Proc. Natl. Acad. Sci. USA78(1), 129–132.PubMedCrossRefGoogle Scholar
  143. 143.
    Urade, al.(1983). Induction of indoleamine 2,3-dioxygenase in alveolar interstitial cells of mouse lung by bacterial lipopolysaccharide.J. Biol. Chem.258(10), 6621–6627.PubMedGoogle Scholar
  144. 144.
    Swanson, al.(2004). CD11c+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenasel.Am. J. Respir. Cell Mol. Biol.30(3), 311–318.PubMedCrossRefGoogle Scholar
  145. 145.
    Hayaishi, al.(1975). Indoleamine 2,3-dioxygenase. Note II. Biological function.Acta Vitaminol. Enzymol.29(1–6), 1–6.PubMedGoogle Scholar
  146. 146.
    Hirata, F., T. Ohnishi, and O. Hayaishi (1977). Indoleamine 2,3-dioxygenase. Characterization and properties of enzyme. 02-complex.J. Biol. Chem.252(13), 4637–4642.PubMedGoogle Scholar
  147. 147.
    Grohmann, U., F. Fallarino, and P. Puccetti (2003). Tolerance, DCs and tryptophan: Much ado about IDO.Trends Immunol.24(5), 242–248.PubMedCrossRefGoogle Scholar
  148. 148.
    Feigelson, P., Y. Ishimura, and 0. Hayaishi (1964). On the activation and catalytic mechanism of microbial tryptophan pyrrolase.Biochem. Biophys. Res. Commun.14, 96–101.PubMedCrossRefGoogle Scholar
  149. 149.
    Cook, J.S., C.I. Pogson, and S.A. Smith (1980). Indoleamine 2,3-dioxygenase. A new, rapid, sensitive radiometric assay and its application to the study of the enzyme in rat tissues.Biochem. J.189(3), 461–466.PubMedGoogle Scholar
  150. 150.
    Yamazaki, al.(1985). Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme.Biochem. J.230(3), 635–638.PubMedGoogle Scholar
  151. 151.
    Kotake, Y. and T. Masayama (1937). Uber den mechanismus der kynurenin-bildung aus tryptophan.HoppeSeyler’s Z. Physiol. Chem.243, 237–244.CrossRefGoogle Scholar
  152. 152.
    Knox, W. and A. Mehler (1951). The adaptive increase of the tryptophan peroxidase oxidase system of liver.Science113, 237–238.PubMedCrossRefGoogle Scholar
  153. 153.
    Takikawa, al.(1986). Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase.J. Biol. Chem.261(8), 3648–3653.PubMedGoogle Scholar
  154. 154.
    Mellor, A.L. and D.H. Munn (1999). Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation?Immunol. Today20(10), 469–473.PubMedCrossRefGoogle Scholar
  155. 155.
    Bianchi, M., R. Bertini, and R Ghezzi (1988). Induction of indoleamine dioxygenase by interferon in mice: A study with different recombinant interferons and various cytokines.Biochem. Biophys. Res. Commun.152, 237–242.PubMedCrossRefGoogle Scholar
  156. 156.
    Fujigaki, S., K. Saito, K. Sekikawa, S. Tone, O. Takikawa, H. Fujiietal. (2001). Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-g-independent mechanism.Eur. J. Immunol.31, 2313–2318.PubMedCrossRefGoogle Scholar
  157. 157.
    Liebau, al.(2002). Interleukin-12 and interleukin-18 induce indoleamine 2,3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-gamma.Anticancer Res.22(2A), 931–936.PubMedGoogle Scholar
  158. 158.
    Alberati-Giani, D., R Malherbe, P. Ricciardi-Castagnoli, C. Kohler, S. Denis-Donini, and A.M. Cesura (1997). Differential regulation of indoleamine 2,3-dioxygenase expression by nitric oxide and inflammatory mediators in IFN-gamma-activated murine macrophages and microglial cells.J. Immunol.159(1), 419–426.PubMedGoogle Scholar
  159. 159.
    Musso, al.(1994). Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes.Blood83(5), 1408–1411.PubMedGoogle Scholar
  160. 160.
    MacKenzie, al.(1999). Cytokine mediated regulation of interferon-gamma-induced IDO activation.Adv. Exp. Med. Biol.467, 533–539.PubMedCrossRefGoogle Scholar
  161. 161.
    Yuan, al.(1998). Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-beta: Selective inhibition of indoleamine 2,3 dioxygenase and tryptophanyl-tRNA synthetase gene expression.J. Cell. Physiol.177(1), 174–186.PubMedCrossRefGoogle Scholar
  162. 162.
    Munn, al.(1999). Inhibition of T cell proliferation by macrophage tryptophan catabolism.J. Exp. Med.189(9), 1363–1372.PubMedCrossRefGoogle Scholar
  163. 163.
    Hwu, al.(2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation.J. Immunol.164, 3596–3599.PubMedGoogle Scholar
  164. 164.
    Mellor, A.L., D.B. Keskin, T. Johnson, R Chandler, and D.H. Munn (2002). Cells expressing indoleamine 2,3dioxygenase inhibit T cell responses.J. Immunol.168(8), 3771–3776.PubMedGoogle Scholar
  165. 165.
    Frumento, al.(2002). Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase.J. Exp. Med.196, 459–468.PubMedCrossRefGoogle Scholar
  166. 166.
    Terness, al.(2002). Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenaseexpressing dendritic cells: Mediation of suppression by tryptophan metabolites.J. Exp. Med.196, 447–457.PubMedCrossRefGoogle Scholar
  167. 167.
    Munn, al.(1998). Prevention of allogeneic fetal rejection by tryptophan catabolism.Science281, 1191–1193.PubMedCrossRefGoogle Scholar
  168. 168.
    Mellor, al.(2001). Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy.Nat. Immunol2(1), 64–68.PubMedCrossRefGoogle Scholar
  169. 169.
    Alexander, A.M., M. Crawford, S. Bertera, W.A. Rudert, O. Takikawa, P.D. Robbinset al.(2002). Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes.Diabetes51(2), 356–365.PubMedCrossRefGoogle Scholar
  170. 170.
    Grohmann, al.(2002). CTLA-4-Ig regulates tryptophan catabolism in vivo.Nat. Immunol.3(11), 1097–1101.PubMedCrossRefGoogle Scholar
  171. 171.
    Salomon, B. and J. Bluestone (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation.Annu. Rev. Immunol.19, 225–252.PubMedCrossRefGoogle Scholar
  172. 172.
    Konieczny, al.(1998). IFN-y is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways.J. Immunol.160, 2059–2064.PubMedGoogle Scholar
  173. 173.
    Shinomiya, al.(1999). Transfer of dendritic cells (DCs) ex vivo stimulated with interferon-gamma (IFN-y) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice.Clin. Exp. Immunol.117(1), 38–43.PubMedCrossRefGoogle Scholar
  174. 174.
    Sobel, al.(2002). Gamma interferon paradoxically inhibits the development of diabetes in the NOD mouse.J. Autoimmunity19(3), 129–137.CrossRefGoogle Scholar
  175. 175.
    Kaufman, al.(1999). The CTLA-4 gene is expressed in placental fibroblasts.Mol. Hum. Reprod.5(1), 84–87.PubMedCrossRefGoogle Scholar
  176. 176.
    Banchereau, al.(2000). Immunobiology of dendritic cells.Annu. Rev. Immunol.18, 767–811.PubMedCrossRefGoogle Scholar
  177. 177.
    Bevan, M. (1976). Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming.J. Immunol.117, 2233–2238.PubMedGoogle Scholar
  178. 178.
    Bevan, M. (1976). Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay.J. Exp. Med.143, 1283–1288.PubMedCrossRefGoogle Scholar
  179. 179.
    Albert, M., B. Sauter, and N. Bhardwaj (1998). Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs.Nature392, 86–89.PubMedCrossRefGoogle Scholar
  180. 180.
    Munz, al.(2000). Human CD4+T lymphocytes consistently respond to latent Epstein-Barr virus nuclear antigen EBNA1.J. Exp. Med.191, 1649–1660.PubMedCrossRefGoogle Scholar
  181. 181.
    Kovacsovics-Bankowski, M. and K. Rock (1995). A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules.Science267, 243–246.PubMedCrossRefGoogle Scholar
  182. 182.
    Rodriguez, al.(1999). Selective transport of intemalized antigens to the cytosol for MHC class I presentation in dendritic cells.Nat. Cell Biol.1, 362–368.PubMedCrossRefGoogle Scholar
  183. 183.
    Svensson, M., B. Stockinger, and M. Wick (1995). Hepatitis B virus small surface antigen particles are processed in a novel endosomal pathway for major histocompatibility complex class I-restricted epitope presentation.Eur. J. Immunol.25, 1063–1070.CrossRefGoogle Scholar
  184. 184.
    Svensson, M., B. Stockinger, and M. Wick (1997). Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells.J. Immunol.158, 4229–4236.PubMedGoogle Scholar
  185. 185.
    Huang, al.(1994). Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.Science264, 961–965.PubMedCrossRefGoogle Scholar
  186. 186.
    Zitvogel, al.(1998). Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes.Nat. Med.4, 594–600.PubMedCrossRefGoogle Scholar
  187. 187.
    Kurts, al.(1996). Constitutive class I-restricted exogenous presentation of self antigens in vivo.J. Exp. Med.184, 923–930.PubMedCrossRefGoogle Scholar
  188. 188.
    Heath, W.R. and F.R. Carbone (2001). Cross-presentation, dendritic cells, tolerance and immunity.Annu. Rev. Immunol.19, 47–64.PubMedCrossRefGoogle Scholar
  189. 189.
    Steinman, al.(2000). The induction of tolerance by dendritic cells that have captured apoptotic cells.J. Exp. Med.191(3), 411–416.PubMedCrossRefGoogle Scholar
  190. 190.
    Urban, B., N. Willcox, and D. Roberts (2001). A role for CD36 in the regulation of dendritic cell function.Proc. Natl. Acad. Sci. USA98, 8750–8755.PubMedCrossRefGoogle Scholar
  191. 191.
    Stuart, al.(2002). Inhibitory effects of apoptotic-cell ingestion upon endotoxin-driven myeloid dendriticcell maturation.J. Immunol.168, 1627–1635.PubMedGoogle Scholar
  192. 192.
    Ohashi, al.(1991). Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice.Cell65, 305–317.PubMedCrossRefGoogle Scholar
  193. 193.
    Oldstone, al.(1991). Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response.Cell65, 319–331.PubMedCrossRefGoogle Scholar
  194. 194.
    Kurts, al.(1998). Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction..J. Exp. Med.188, 409–414.PubMedCrossRefGoogle Scholar
  195. 195.
    Kurts, al.(1999). CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose.Proc. Natl. Acad. Sci. USA96, 12703–12707.PubMedCrossRefGoogle Scholar
  196. 196.
    Kovacsovics-Bankowski, al.(1993). Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.Proc. Natl. Acad. Sci. USA90, 4942–4946.PubMedCrossRefGoogle Scholar
  197. 197.
    Yrlid, U. and M.J. Wick (2000). Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells.J. Exp. Med.191(4), 613–623.PubMedCrossRefGoogle Scholar
  198. 198.
    Albert, al.(1998). Immature dendritic cells phagocytose apoptotic cells via av135and CD36, and cross-present antigens to cytotoxic T lymphocytes.J. Exp. Med.188(7), 1359–1368.PubMedCrossRefGoogle Scholar
  199. 199.
    den Haan, J.M., S.M. Lehar, and M.J. Bevan (2000). CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo.J. Exp. Med.192(12), 1685–1696.CrossRefGoogle Scholar
  200. 200.
    lyoda, al.(2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo.J. Exp. Med.195(10), 1289–1302.CrossRefGoogle Scholar
  201. 201.
    Austyn, J. and R. Steinman (1988). The passenger leukocyte-a fresh look.Transplant. Rev.2, 139–176.CrossRefGoogle Scholar
  202. 202.
    Lechler, R. and J. Batchelor (1982)..Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells.J. Exp. Med.155, 31–41.PubMedCrossRefGoogle Scholar
  203. 203.
    Faustman, D. (1984). Prevention of rejection of mutine islet allografts by pretreatment with anti-dendritic cell antibody.Proc. Natl. Acad. Sci. USA81, 3864.PubMedCrossRefGoogle Scholar
  204. 204.
    Iwai, H. (1989). Acceptance of mutine thyroid allografts by pretreatment of anti-la or anti-dendritic cell antibody.Transplantation47, 45.PubMedCrossRefGoogle Scholar
  205. 205.
    Josien, al.(1998). Critical requirement for graft passenger leukocytes in allograft tolerance induced by donor blood transfusion.Blood92(12), 4539–4544.PubMedGoogle Scholar
  206. 206.
    Sun, al.(1995). Deletion of spontaneous rat liver allograft acceptance by donor irradiation.Transplantation60(3), 233–236.PubMedCrossRefGoogle Scholar
  207. 207.
    Daniel, C., S. Horvath, and P. Allen (1998). A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR.Immunity162, 543–552.CrossRefGoogle Scholar
  208. 208.
    Matzinger, P. and M. Bevan (1977). Hypothesis: Why do so many lymphocytes respond to major histocompatibility antigens?Cell. Immunol.29(1), 1–5.PubMedCrossRefGoogle Scholar
  209. 209.
    Suchin, E., A. Wells, and L. Turka (2001). Quantifying the frequency of alloreactive cells in vivo: New answers to an old question.J. Immunol.166, 973–981.PubMedGoogle Scholar
  210. 210.
    Lechler, R.I., O.A. Garden, and L.A. Turka (2003). The complementary roles of deletion and regulation in transplantation tolerance.Nat. Rev. Immunol.3, 147–158.PubMedCrossRefGoogle Scholar
  211. 211.
    Chow, D., V. Saper, and S. Strober (1987). Renal transplant patients treated with total lymphoid irradiation show specific unresponsiveness to donor antigens in the mixed leukocyte reaction (MLR).J. Immunol.138, 3746–3750.PubMedGoogle Scholar
  212. 212.
    DeBruyne, L., D. Renlund, and D. Bishop (1995). Evidence that human cardiac allograft acceptance is associated with a decrease in donor-reactive helper T lymphocytes.Transplantation59, 778–783.PubMedCrossRefGoogle Scholar
  213. 213.
    AL, P.H.E. (1998). Assessment of the contribution that direct allorecognition makes to the progression of chronic cardiac transplant rejection in humans.Circulation97, 1257–1263.CrossRefGoogle Scholar
  214. 214.
    AL, R.B.E. (2001). Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: Implications for the pathogenesis of chronic allograft nephropathy.J. Immunol.167, 7199–7206.Google Scholar
  215. 215.
    Benichou, G., A. Valujskikh, and P. Heeger (1999). Contributions of direct and indirect T-cell alloreactivity during allograft rejection in mice.J. Immunol.162, 352–358.PubMedGoogle Scholar
  216. 216.
    Benham, A., G. Sawyer, and J. Fabre (1995). Indirect T-cell allorecognition of donor antigens contributes to the rejection of vascularized kidney allografts.Transplantation59, 1028–1032.PubMedCrossRefGoogle Scholar
  217. 217.
    AL, M.B.E. (2001). Acute rejection in the absence of cognate recognition of allograft by T cells.J. Immunol.166, 4879–4883.Google Scholar
  218. 218.
    Larsen, C.P., P.J. Morris, and J.M. Austyn (1990). Donor dendritic leukocytes migrate from cardiac allografts into recipients’ spleens.Transplant. Proc.22(4), 1943–1944.PubMedGoogle Scholar
  219. 219.
    Larsen, al.(1990). Migration and maturation of Langerhans cells in skin transplants and explants.J. Exp. Med.172(5), 1483–1493.PubMedCrossRefGoogle Scholar
  220. 220.
    Sauter, al.(2000). Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells.J. Exp. Med.191, 423–434.PubMedCrossRefGoogle Scholar
  221. 221.
    Forster, I. and I. Lieberam (1996). Peripheral tolerance of CD4 T cells following local activation in adolescent mice.Eur. J. Immunol.26, 3194–3202.PubMedCrossRefGoogle Scholar
  222. 222.
    Adler, al.(1998). CD4+ tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells.J. Exp. Med.187, 1555–1564.PubMedCrossRefGoogle Scholar
  223. 223.
    Morgan, D., H. Kreuwel, and L. Sherman (1999). Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens.J. Immunol.163, 723–727.PubMedGoogle Scholar
  224. 224.
    Pooley, J.L., W.R. Heath, and K. Shortman (2001). Cutting edge: Intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells.J. Immunol.166(9), 5327–5330.PubMedGoogle Scholar
  225. 225.
    Jonuleit, al.(2000). Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells.J. Exp. Med.192(9), 1213–1222.PubMedCrossRefGoogle Scholar
  226. 226.
    Dhodapkar, al.(2001). Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells.J. Exp. Med.193(2), 233–238.PubMedCrossRefGoogle Scholar
  227. 227.
    Dhodapkar, M.V. and R.M. Steinman (2002). Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans.Blood100(1), 174–177.PubMedCrossRefGoogle Scholar
  228. 228.
    Fu, Eet al.(1996). Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients.Transplantation62(5), 659–665.PubMedCrossRefGoogle Scholar
  229. 229.
    Fu, al.(1997). Costimulatory molecule-deficient dendritic cell progenitors induce T cell hyporesponsiveness in vitro and prolong the survival of vascularized cardiac allografts.Transplant. Proc.29(1–2), 1310.PubMedCrossRefGoogle Scholar
  230. 230.
    DePaz, al.(2003). Immature rat myeloid dendritic cells generated in low-dose granulocyte macrophage-colony stimulating factor prolong donor-specific rat cardiac allograft survival.Transplantation75(4), 521–528.PubMedCrossRefGoogle Scholar
  231. 231.
    James, al.(2002). HY peptides modulate transplantation responses to skin allografts.Int. Immunol.14(11), 1333–1342.PubMedCrossRefGoogle Scholar
  232. 232.
    Lu, L. and A.W. Thomson (2002). Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease.Transplantation73(1 Suppl), S19–S22.PubMedCrossRefGoogle Scholar
  233. 233.
    Lu, al.(1997). Blockade of the CD40–CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival.Transplantation64(12), CD40–CD40.PubMedCrossRefGoogle Scholar
  234. 234.
    Steinbrink, al.(1997). Induction of tolerance by IL-10-treated dendritic cells.J. Immunol.159, 4772.PubMedGoogle Scholar
  235. 235.
    Nouri-Shirazi, M. and E. Guinet (2002). Direct and indirect cross-tolerance of alloreactive T cells by dendritic cells retained in the immature stage.Transplantation74(7), 1035–1044.PubMedCrossRefGoogle Scholar
  236. 236.
    Szabo, G., C. Gavala, and P. Mandrekar (2001). Tacrolimus and cyclosporine A inhibit allostimulatory capacity and cytokine production of human myeloid dendritic cells.J. Invest. Med.49, 442.CrossRefGoogle Scholar
  237. 237.
    Satake, al.(2000). Characterization of rat OX40 ligand by monoclonal antibody.Biochim. Biophys. Acta270, 1041.Google Scholar
  238. 238.
    Yuan, al.(2003). The role of the CD134–CD134 ligand costimulatory pathway in alloimmune responses in vivo.J. Immunol.170, CD134–CD134.PubMedGoogle Scholar
  239. 239.
    Dupuy, al.(1991). Cyclosporin A inhibits the antigen-presenting functions of freshly isolated human Langerhans cells in vitro.J. Invest. Dermatol.96(4), 408–413.PubMedCrossRefGoogle Scholar
  240. 240.
    Griffin, al.(2001). Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: A vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo.Proc. Natl. Acad. Sci. USA98(12), 6800–6805.PubMedCrossRefGoogle Scholar
  241. 241.
    Piemonti, L., P. Monti, and M.S.E. AL (2000). Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells.J. Immunol.164, 4443.PubMedGoogle Scholar
  242. 242.
    Clavreul, A., C. D’Hellencourt, and C. Montero-Menei (1998). Vitamin D differentially regulates B7.1 and B7.2 expression on human peripheral blood monocytes.Immunology95, 272.PubMedCrossRefGoogle Scholar
  243. 243.
    Terada, N., J. Lucas, and A.S.E. AL (1993). Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cell cycle.J. Cell Physiol.154, 7.PubMedCrossRefGoogle Scholar
  244. 244.
    Aagaard-Tillery, K. and D. Jelinek (1994). Inhibition of B lymphocyte cell cycle progression and differentiation by rapamycin.Cell. Immunol.156, 493.PubMedCrossRefGoogle Scholar
  245. 245.
    Taylor-Fishwick, M. Kahan, and P.H.E. AL, (1993). Evidence that rapamycin has differential effect on IL-4 function.Transplantation56, 368.PubMedCrossRefGoogle Scholar
  246. 246.
    Monti, al.(2003). Rapamycin impairs antigen uptake of human dendritic cells.Transplantation75(1), 137–145.PubMedCrossRefGoogle Scholar
  247. 247.
    Vosters, al.(2003). Dendritic cells exposed to nacystelyn are refractory to maturation and promote the emergence of alloreactive T cells.Transplantation75(3), 383–389.PubMedCrossRefGoogle Scholar
  248. 248.
    Giannoukakis, al.(2000). Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides.Mol. Ther.1(5 Pt 1), 430–437.PubMedCrossRefGoogle Scholar
  249. 249.
    Krasinskas, al.(2000). Replacement of graft-resident donor-type antigen presenting cells alters the tempo and pathogenesis of murine cardiac allograft rejection.Transplantation70, 514–521.PubMedCrossRefGoogle Scholar
  250. 250.
    Wise, al.(1998). Cutting edge: Linked suppression of skin graft rejection can operate through indirect recognition.J. Immunol161, 5813–5816.PubMedGoogle Scholar
  251. 251.
    Nimi, al.(2001). Oral antigen induces allograft survival by linked suppression via the indirect pathway.Transplant. Proc.33, 81.CrossRefGoogle Scholar
  252. 252.
    Matsue, al.(1999). Induction of antigen-specific immunosuppression by CD95L cDNA-transfected “killer” dendritic cells.Nat. Med.5(8), 930–937.PubMedCrossRefGoogle Scholar
  253. 253.
    Lu, al.(1999). Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients.Gene Ther.6(4), 554–563.PubMedCrossRefGoogle Scholar
  254. 254.
    O’Rourke, al.(2000). A dendritic cell line genetically modified to express CTLA4-IG as a means to prolong islet allograft survival.Transplantation69(7), 1440–1446.PubMedCrossRefGoogle Scholar
  255. 255.
    Takayama, al.(2002). Retroviral delivery of transforming growth factor-betal to myeloid dendritic cells: Inhibition of T-cell priming ability and influence on allograft survival.Transplantation74(1), 112–119.PubMedCrossRefGoogle Scholar
  256. 256.
    Buonocore, al.(2002). Dendritic cells transduced with viral interleukin 10 or Fas ligand: No evidence for induction of allotolerance in vivo.Transplantation73(1), S27–S30.PubMedCrossRefGoogle Scholar
  257. 257.
    Muller, A., M. Rafter, and G. Schonrich (1999). T cell stimulation upon long-term secretion of viral IL-10.J. Immunol.29, 2740.Google Scholar
  258. 258.
    Buonocore, al.(2003). Dendritic cells overexpressing CD95 (Fas) ligand elicit vigorous allospecific T-cell responses in vivo.Blood101(4), 1469–1476.PubMedCrossRefGoogle Scholar
  259. 259.
    Gershon, al.(1972). Suppressor T cells..J. Immunol.108, 586–590.PubMedGoogle Scholar
  260. 260.
    Sakaguchi, al.(1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J. Immunol.155, 1151–1164.PubMedGoogle Scholar
  261. 261.
    AL, K.S.E. (2001). Requirement for natural killer T (NKT) cells in the induction of allograft tolerance.Proc. Natl. Acad. Sci. USA98, 2577–2581.CrossRefGoogle Scholar
  262. 262.
    AL, L.G.E. (2002). Both CD4+CD25+ and CD4+CD25- regulatory cells mediate dominant transplantation tolerance.J. Immunol.168, 5558–5565.Google Scholar
  263. 263.
    Jordan, al.(2001). Thymic selection of CD4+CD25 + regulatory T cells induced by an agonist self-peptide.Nat. Immunol.2, 301.PubMedCrossRefGoogle Scholar
  264. 264.
    Mahnke, al.(2002). Immature, but not inactive: The tolerogenic function of immature dendritic cells.Immunol. Cell Biol.80, 477.PubMedCrossRefGoogle Scholar
  265. 265.
    Steinman, R.M. and M.C. Nussenzweig (2002). Avoiding honor autotoxicus: The importance of dendritic cells in peripheral T cell tolerance.Proc. Natl. Acad. Sci. USA99(1), 351–358.PubMedCrossRefGoogle Scholar
  266. 266.
    Dieckmann, al.(2002). Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin-lproducing, contact-independent type- 1-like regulatory T cells.J. Exp. Med.196, 247–253.PubMedCrossRefGoogle Scholar
  267. 267.
    Hori, S., T. Monura, and S. Sakaguchi (2003). Control of regulatory T cell development by the transcription factor Foxp3.Science299, 1057–1061.PubMedCrossRefGoogle Scholar
  268. 268.
    Thomas, al.(1999). Peritransplant tolerance induction in macaques: Early events reflecting the unique synergy between immunotoxin and deoxyspergualin.Transplantation68(11), 1660–1673.PubMedCrossRefGoogle Scholar
  269. 269.
    Luke, al.(2001). Anti-CD45RB monoclonal antibody-mediated transplantation tolerance.Curr. Mol. Med.1, 533.PubMedCrossRefGoogle Scholar
  270. 270.
    Min, al.(2003). Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance.J. Immunol.170, 1304–1312.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Kena A. Swanson
    • 1
  • David S. Wilkes
    • 1
  1. 1.Departments of Medicine, Microbiology and ImmunologyIndiana University School of Medicine, Richard L. Roudebush VA Medical CenterIndianapolisUSA

Personalised recommendations