Xenotransplantation

  • Anita S. Chong
  • Ian A. Boussy
  • Guerard W. Byrne
Chapter

Abstract

An organism consisting of two or more organs of different genetic composition is an ancient concept. Greek, Indian, and Chinese mythologies provide abundant examples of mythical composite creatures with fantastic properties: the Greek Chimera, with three heads (lion, goat, and snake) and a body comprising a lion in the front, a goat in the rear, and snake for a tail; the Indian Ganesh, with the head of an elephant and a body of a man; and the Chinese Phoenix, which is a bird with the neck of a snake, the back of a tortoise, and the tail of a fish. By those standards, the goals of modern xenotransplantation are far less fanciful.

Keywords

Ischemia Lysine Cardiol Oligo Saccharide Galactose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evans, R. (1992). Need, demand, and supply in kidney transplantation: A review of the data, an examination of the issues, and projections through the year 2000.Semin. Nephrol.12, 234–255.PubMedGoogle Scholar
  2. 2.
    Stevenson, L., R. Kormos, R. Bourge, A. Gelijns, B. Griffith, R. Hershbergeret al.(2001). Mechanical cardiac support 2000: current applications and future trial design.J. Am. Coll. Cardiol.37, 340–370.PubMedCrossRefGoogle Scholar
  3. 3.
    Kjaergard, L.L., J. Liu, B. Als-Nielsen, and C. Gluud (2003). Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: A systematic reviewJAMA289 217–222.PubMedCrossRefGoogle Scholar
  4. 4.
    White, S.A. and M.L. Nicholson (1999). Xenotransplantation.Br. J. Surg.199, 1499–1514.CrossRefGoogle Scholar
  5. 5.
    Reemtsma, K., B. McCracken, J. Schlegel, M. Pearl, C. Pearce, C. DeWillet al.(1964). Renal heterotransplantation from baboon to man.Ann. Surg.160, 384–408.PubMedCrossRefGoogle Scholar
  6. 6.
    Starzl, T., J. Fung, A. Tzakis, S. Todo, A. Demetris, I. Marinoet al.(1993). Baboon-to-human liver transplantation.Lancet341, 65–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Dorling, A., K. Riesbeck, A. Warrens, and R. Lechler (1997). Clinical xenotransplantation of solid organs.Lancet349 867–871.PubMedCrossRefGoogle Scholar
  8. 8.
    Caine, R. (1970). Organ transplantation between widely disparate species.Transplant. Proc.2 550–553.Google Scholar
  9. 9.
    Cascalho, M. and J.L. Platt (2001). The immunological barrier to xenotransplantation.Immunity14 437–446.PubMedCrossRefGoogle Scholar
  10. 10.
    JiH.K. Ohmura, U. Mahmood, D.M. Lee, F.M. Hofhuis, S.A. Boackle et al. (2002). Arthritis critically dependent on innate immune system playersImmunity16 157–168.PubMedCrossRefGoogle Scholar
  11. 11.
    Pangburn, M. (2000). Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complementImmunopharmacology49 149–157.PubMedCrossRefGoogle Scholar
  12. 12.
    Good, A., D. Cooper, A. Malcolm, R. Ippolito, E. Koren, F. Neethinget al.(1992). Identification of carbohydrate structures that bind human antiporcine antibodies: Implication for discordant xenografting in humansTransplant. Proc42 559.Google Scholar
  13. 13.
    Galili, U. (1993). Interaction of the natural anti-Gal antibody with a-galactosyl epitopes: A major obstacle for xenotransplantation in humansImmunol. Today14 480–482.PubMedCrossRefGoogle Scholar
  14. 14.
    Galili, U. (1993). Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibodySpringer Semin. Immunopathol15 155–171.Google Scholar
  15. 15.
    Teranishi, K., R. Manez, M. Awwad, and D. Cooper (2002). Anti-Gal alpha 1–3Gal IgM and IgG antibody levels in sera of humans and old world non-human primatesXenotransplantation9 148–154.PubMedCrossRefGoogle Scholar
  16. 16.
    Buonomano, R., C. Tinguely, R. Rieben, P. Mohacsi, and U. Nydegger (1999). Quantitation and characterization of anti-Galalphal-3Gal antibodies in sera of 200 healthy personsXenotransplantation6 173–180.PubMedCrossRefGoogle Scholar
  17. 17.
    Galili, U., F. Anaraki, A. Thall, C. Hill-Black, and M. Radic (1993). One percent of human circulating B lymphocytes are capable of producing the natural anti-Gal antibody.Blood82, 2485–2493.PubMedGoogle Scholar
  18. 18.
    Galili, U., R. Mandrell, R. Hamandeh, S.B. Shohet, and J. Griffis (1988). Interaction between human natural anti-a-galactosyl immunoglobulin G and bacteria of the human floraInfect. Immun56 1730.PubMedGoogle Scholar
  19. 19.
    Yu, P.B. W. Parker, M.L. Everett, I.J. Fox, and J.L. Platt (1999). Immunochemical properties of anti-Gal alpha 1,3Gal antibodies after sensitization with xenogeneic tissuesJ. Clin. Immunol19 116–126.PubMedCrossRefGoogle Scholar
  20. 20.
    Romo, G., J. Dong, A. Schade, E. Gardiner, G. Kansas, C. Liet al.(1999). The glycoprotein lb-IX-V complex is a platelet counterreceptor for P-selectin.J. Exp. Med.190, 803–814.PubMedCrossRefGoogle Scholar
  21. 21.
    Kobayashi, T., S. Taniguchi, Y. Ye, M. Niekrasz, S. Kosanke, F. Neethlinget al.(1996). Delayed xenograft rejection in C3-depleted discordant (pig-to-baboon) cardiac xenografts treated with cobra venom factor.Transplant. Proc.28, 560.PubMedGoogle Scholar
  22. 22.
    Kirschfink, M. (2001). Targeting complement in therapy.Immunol. Rev.180, 177–189.PubMedCrossRefGoogle Scholar
  23. 23.
    Fodor, W., S. Rollins, E. Guilmette, E. Setter, and S. Squinto (1995). A novel bifunctional chimeric complement inhibitor that regulates C3 convertase and formation of the membrane attack complexJ. Immunol. 1554135–4138PubMedGoogle Scholar
  24. 24.
    Wang, H., S.A. Rollins, Z. Gao, B. Garcia, Z. Zhang, J. Xinget al.(1999). Complement inhibition with an anti-05 monoclonal antibody prevents hyperacute rejection in a xenograft heart transplantation model.Transplantation68, 1643–1651.PubMedCrossRefGoogle Scholar
  25. 25.
    Fiane, A., T. Mollnes, V. Videm, T. Hovig, K. Hogasen, O. Mellbyeet al.(1999). Compstatin, a peptide inhibitor of C3, prolongs survival of ex vivo perfused pig xenografts.Xenotransplantation6, 52–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Cozzi, E., F. Bhatti, M. Schmoeckel, G. Chavez, K.G. Smith, A. Zaidiet al.(2000). Long-term survival of nonhuman primates receiving life-supporting transgenic porcine kidney xenografts.Transplantation70, 15–21.PubMedGoogle Scholar
  27. 27.
    Byrne, G.W., K.R. McCurry, M.J. Martin, S.M. McClellan, J.L. Platt, and J.S. Logan (1997). Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage.Transplantation63, 149–155.PubMedCrossRefGoogle Scholar
  28. 28.
    McCurry, K., D. Kooyman, C. Alvarado, A. Cotterell, A. Martin, J. Loganet al.(1995). Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injuryNat. Med. 1423–427PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou, C., E. McInnes, N. Parsons, G. Langford, R. Lancaster, A. Richardset al.(2002). Production and characterization of a pig line transgenic for human membrane cofactor protein.Xenotransplantation9, 183–190.PubMedCrossRefGoogle Scholar
  30. 30.
    Diamond, L.G., C.M. Quinn, M.J. Martin, J.L. Lawson, J.L. Platt, and J.S. Logan (2001). A human CD46 trans-genic pig model system for the study of discordant xenotransplantation.Transplantation71, 132–142.PubMedCrossRefGoogle Scholar
  31. 31.
    Lin, S.S. and J.L. Platt (1996). Immunologic barriers to xenotransplantation.J. Heart Lung Transplant.15,547–555.PubMedGoogle Scholar
  32. 32.
    Lin, S., B. Weidner, G. Byrne, L. Diamond, J. Lawson, C. Hoopeset al.(1998). The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplantsJ. Clin. Invest. 1011745–1756PubMedCrossRefGoogle Scholar
  33. 33.
    Lin, S.S., M.J. Hanaway, G.V. Gonzalez-Stawinski, C.L. Lau, W. Parker, R.D. Daviset al.(2000). The role of anti-Gal 1al-3Gal antibodies in acute vascular rejection and accommodation of xenografts.Transplantion70, 1667–1674.CrossRefGoogle Scholar
  34. 34.
    Lin, S.S., D.L. Kooyman, L.J. Daniels, C.W. Daggett, W. Parker, J.H. Lawsonet al.(1997). The role of natural anti-Gal alpha 1–3Gal antibodies in hyperacute rejection of pig-to-baboon cardiac xenotransplants.Transpl. Immunol.5, 212–218.PubMedCrossRefGoogle Scholar
  35. 35.
    Taniguchi, S., F.A. Neethling, E.Y. Korchagina, N. Bovin, Y. Ye, T. Kobayashiet al.(1996). In vivo immunoadsorption of antipig antibodies in baboons using a specific Gal(alpha)1–3Gal column.Transplantation62, 1379–1384.PubMedCrossRefGoogle Scholar
  36. 36.
    Alwayn, I., M. Basker, L. Buhler, and D. Cooper (1999). The problem of anti-pig antibodies in pig-to-primate xenografting: Current and novel methods of depletion and/or suppression of production of anti-pig antibodies.Xenotransplantation6, 157–168.PubMedCrossRefGoogle Scholar
  37. 37.
    Katopodis, A., R. Warner, R. Duthaler, M. Streiff, A. Bruelisauer, O. Kretzet al.(2002). Removal of antiGalalphal,3Gal xenoantibodies with an injectable polymerJ. Clin. Invest. 1101869–1877PubMedGoogle Scholar
  38. 38.
    Fryer, J., J. Leventhal, A. Dalmasso, S. Chen, P. Simone, J. Goswitzet al.(1995). Beyond hyperacute rejection: Accelerated rejection in a discordant xenograft model by adoptive transfer of specific subsets.Transplantation59, 171–176.PubMedGoogle Scholar
  39. 39.
    Leventhal, J., A. Matas, L. Sun, S. Reif, R. Bolman, A. Dalmassoet al.(1993). The immunopathology of cardiac xenograft rejection in the guinea pig-to-rat model.Transplantation56, 1–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Goddard, M., J. Dunning, J. Horsley, C. Atkinson, G. Pino-Chavez, and J. Wallwork (2002). Histopathology of cardiac xenograft rejection in the pig-to-baboon model. J.Heart Lung Transplant.21, 474–484.PubMedCrossRefGoogle Scholar
  41. 41.
    Kaplon, R.J., R.E. Michler, H. Xu, P.A. Kwiatkowski, N.M. Edwards, and J.L. Platt (1995). Absence of hyper-acute rejection in newborn pig-to-baboon cardiac xenografts.Transplantation59, 1–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Holzknecht, Z., K. Kuypers, T. Plummer, J. Williams, M. Bustos, G. Goreset al.(2002). Apoptosis and cellular activation in the pathogenesis of acute vascular rejection.Circ. Res.91, 1135–1141.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu, H., B. Naziruddin, D. Yin, J. Shen, J.S. Logan, G.W. Byrneet al.(2003). Functional characteristics of anti-Gal monoclonal antibodies: Correlation between in vitro and in vivo activity.1 Immunol.170, 1531–1539.Google Scholar
  44. 44.
    Foreman, K.E., A.A. Vaporciyan, B.K. Bonish, M.L. Jones, K.J. Johnson, M.M. Glovskyet al.(1994). C5a-induced expression of P-selectin in endothelial cells.J. Clin. Invest.94, 1147–1155.PubMedCrossRefGoogle Scholar
  45. 45.
    Kozlowski, T., R. Monroy, Y. Xu, R. Glaser, M. Awwad, D. Cooper, and D. Sachs (1998). Anti-Gal (alpha) 1–3Gal antibody response to porcine bone marrow in unmodified baboons and baboons conditioned for tolerance induction.Transplantation66, 176–182.PubMedCrossRefGoogle Scholar
  46. 46.
    Galili, U., A. Tibell, B. Samuelsson, L. Rydberg, and C. Groth (1995). Increased anti-Gal activity in diabetic patients transplanted with fetal porcine islet cell clusters.Transplantation59, 1549–1556.PubMedGoogle Scholar
  47. 47.
    Buhler, L., M. Awwad, M. Basker, S. Gojo, A. Watts, S. Treter (2000). High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response.Transplantation69, 2296–2304.PubMedCrossRefGoogle Scholar
  48. 48.
    Diamond, L., G. Byrne, A. Schwarz, T. Davis, D. Adams, and J. Logan (2002). Analysis of the control of the anti-gal immune response in a non-human primate by galactose alpha]-3 galactose trisaccharide-polyethylene glycol conjugateTransplantation73 1780–1787.PubMedCrossRefGoogle Scholar
  49. 49.
    Teranishi, K., B. Gollackner, L. Buhler, C. Knosalla, L. Correa, J. Downet al.(2002). Depletion of anti-gal antibodies in baboons by intravenous therapy with bovine serum albumin conjugated to gal oligosaccharides.Transplantation73, 129–139.PubMedCrossRefGoogle Scholar
  50. 50.
    Thall, A., P. Maly, and J. Lowe (1995). Oocyte Galal,3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse.J. Biol. Chem.270, 21437–21440.PubMedCrossRefGoogle Scholar
  51. 51.
    Tearle, R., M. Tange, Z. Zannettino, M. Katerelos, T. Shinkel, B. van Denderenet al.(1996). The a1,3-galactosyltransferase knockout mouse. Implications for xenotransplantation.Transplantation61, 13–19.PubMedCrossRefGoogle Scholar
  52. 52.
    Campbell, K., J. McWhir, W. Ritchie, and I. Wilmut (1996). Sheep cloned by nuclear transfer from a cultured cell line.Nature380, 64–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Polejaeva, I., S. Chen, T. Vaught, R. Page, J. Mullins, S. Ballet al.(2000). Cloned pigs produced by nuclear transfer from adult somatic cells.Nature407, 86–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Baguisi, A., E. Behboodi, D. Melican, J. Pollock, M. Destrempes, C. Cammusoet al.(1999). Production of goats by somatic cell nuclear transfer.Nat. Biotechnol.17, 456–461.PubMedCrossRefGoogle Scholar
  55. 55.
    Cibelli, J., S. Stice, P. Golueke, J. Kane, J. Jerry, C. Blackwellet al.(1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Science280, 1256–1258.PubMedCrossRefGoogle Scholar
  56. 56.
    Wakayama, T., I. Rodriguez, A. Perry, R. Yanagimachi, and P. Mombaerts (1999). Mice cloned from embryonic stem cells.Proc. Natl. Acad. Sci. USA96, 14984–14989.PubMedCrossRefGoogle Scholar
  57. 57.
    Onishi, A., M. Iwamoto, T. Akita, S. Mikawa, K. Takeda, T. Awataet al.(2000). Pig cloning by microinjection of fetal fibroblast nuclei.Science289, 1188–1190.PubMedCrossRefGoogle Scholar
  58. 58.
    McCreath, K., J. Howcroft, K. Campbell, A. Colman, A. Schnieke, and A. Kind (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.Nature405, 1066–1069.PubMedCrossRefGoogle Scholar
  59. 59.
    Bondioli K., J. Ramsoondar, B. Williams, C. Costa, and W. Fodor (2001). Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar.Mol. Reprod. Dev.60, 189–195.PubMedCrossRefGoogle Scholar
  60. 60.
    Dai, Y., T. Vaught, J. Boone, S. Chen, C. Phelps, S. Ballet al.(2002). Targeted disruption of the alphal, 3-galactosyltransferase gene in cloned pigs.Nat. Biotechnol.20, 251–255.PubMedCrossRefGoogle Scholar
  61. 61.
    Lai, L., D. Kolber-Simonds, K.W. Park, H.T. Cheong, J.L. Greenstein, G.S. Imet al.(2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning.Science295, 1089–1092.PubMedCrossRefGoogle Scholar
  62. 62.
    Phelps, C.J., C. Koike, T.D. Vaught, J. Boone, K.D. Wells, S.-H. Chenet al.(2002). Production of a1,3Galactosyltransferase-deficient pigs.Science299, 411–414.PubMedCrossRefGoogle Scholar
  63. 63.
    Patience, C., Y. Takeuchi, and R. Weiss (1997). Infection of human cells by an endogenous retrovirus of pigs.Nat. Med.3, 282–286.PubMedCrossRefGoogle Scholar
  64. 64.
    Paradis, K., G. Langford, Z. Long, W. Heneine, P. Sandstrom, W. Switzeret al.(1999). Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group.Science285, 1236–1241.PubMedCrossRefGoogle Scholar
  65. 65.
    van der Laan, L., C. Lockey, B. Griffeth, E Frasier, C. Wilson, D. Onionset al.(2000). Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice.Nature407, 90–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Rother, R., W. Fodor, J. Springhorn, C. Birks, E. Setter, M. Sandrinet al.(1995). A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody.J. Exp. Med.182, 1345–1355.PubMedCrossRefGoogle Scholar
  67. 67.
    Platt, J.L. (2000). Xenotransplantation. New risks, new gains.Nature27, 29–30.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Anita S. Chong
    • 1
  • Ian A. Boussy
    • 2
  • Guerard W. Byrne
    • 3
  1. 1.Department of SurgeryThe University of ChicagoChicagoUSA
  2. 2.Department of BiologyLoyola University of ChicagoChicagoUSA
  3. 3.Transplant CenterThe Mayo ClinicRochesterUSA

Personalised recommendations