Skip to main content

Current Paradigms in Cellular Oxygen Sensing

  • Conference paper
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Organisms, tissues and cells react to hypoxia by activating adaptive responses that tend to preserve systemic oxygen transport, cellular oxygen delivery, and the resistance of cells against the consequences of severe hypoxia. These responses are required for embryonic development and for survival through adulthood. Although much has been learned about the signaling pathways that are activated in hypoxic cells, the underlying mechanism of O2sensing is not established. Most of the putative models of O2sensing include the involvement of redox-dependent reactions and many implicate reactive oxygen species in the signaling process. The sources of these oxidant signals are thought to include members of the NAD(P)H oxidase system and/or mitochondria. This article reviews evidence for and against the involvement of these systems in the O2sensing pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla S and Will JA. Potentiation of the hypoxic contraction of guinea-pig isolated pulmonary arteries by two inhibitors of superoxide dismutase. Gen Pharmacol 26: 785–792, 1995.

    Article  CAS  PubMed  Google Scholar 

  2. Ali MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT and Gewertz BL. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Physiol 277: L1057–L1065, 1999.

    CAS  PubMed  Google Scholar 

  3. Archer S and Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: potassium channels, redox 0(2) sensors, and controversies. News Physiol Sci 17:131–137, 2002.

    CAS  PubMed  Google Scholar 

  4. Archer SL, Huang J, Henry T, Peterson D and Weir EK. A redox-based O2sensor in rat pulmonary vasculature. Circ Res 73: 1100–1112, 1993.

    Article  CAS  PubMed  Google Scholar 

  5. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC and Weir EK. O2sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA 96:7944–7949, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Aslund F, Zheng M, Beckwith J and Storz G. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol disulfide status. Proc Natl Acad Sci USA 96:6161–6165, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Babior BM, Lambeth JD and Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Bio-phys 397:342-344, 2002.

    Article  CAS  Google Scholar 

  8. Boveris A, Oshino N and Chance B. The cellular production of hydrogen peroxide. Biochem J 128:617–630, 1972.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bunn HF and Poyton RO. Oxygen sensing and molecular adaptation to hypoxia.Physiol Reviews76:839–885, 1996.

    CAS  Google Scholar 

  10. Burke TM and Wolin MS. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol 252:H721–H732, 1987.

    CAS  PubMed  Google Scholar 

  11. Chandel NS, .Budinger GRS and Schumacker PT. Molecular oxygen modulates cytochrome c oxidase function. J Biol Chem 271: 18672–18677, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95: 11715–11720, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM and Schumacker PT. Reactive oxygen species generated at mitochondrial Complex III stabilize HIF-1-alpha during hypoxia: A mechanism of O2sensing. J Biol Chem 275:25130–25138, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Chandel NS, Trzyna WC, McClintock DS and Schumacker PT. Role of Oxidants in NF-kappaB Activation and TNF-alpha Gene Transcription Induced by Hypoxia and Endotoxin. J Immunol 165:1013–1021, 2000.

    CAS  PubMed  Google Scholar 

  15. Chandel NS, Vander Heiden MG, Thompson CB and Schumacker PT. Redox regulation of p53 during hypoxia. Oncogene 19:3840–3848, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper CE. The steady-state kinetics of cytochrome c oxidation by cytochrome oxidase. Bioch BiophysAct 1017: 187–203, 1990.

    CAS  Google Scholar 

  17. Duranteau J, Chandel NS, Kulisz A, Shao Z and Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273: 11619–11624, 1998.

    Article  CAS  PubMed  Google Scholar 

  18. Dusi S, Delia B, V, Grzeskowiak M and Rossi F. Relationship between phosphorylation and translocation to the plasma membrane of p47phox and p67phox and activation of the NADPH oxidase in normal and Ca(2+)-depleted human neutrophils. Biochem J 290 (Pt 1): 173–178, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ and Ratcliffe PJ. C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydrox-ylation. Cell 107:43–54, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD and Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.Molecular & Cellular Biology 16: 4604–4613, 1996.

    CAS  Google Scholar 

  21. Freeman BA and Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Biol Chem 256:10986–10992, 1981.

    CAS  PubMed  Google Scholar 

  22. Fu XW, Wang DS, Nurse CA, Dinauer MC and Cutz E. NADPH oxidase is an 02 sensor in airway chemoreceptors: Evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci USA 97:4374–4379, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gilbert HF. Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63: 69–172, 1990.

    CAS  PubMed  Google Scholar 

  24. Gillespie MN, Killilea DW, Solomon M, Babal P, LeDoux SP and Wilson GL. Hypoxia causes oxidant lesions in the rat pulmonary artery smooth muscle cell VEGF gene - Potential link to VEGF mRNA expression. Chest 114: 45S, 1998.

    Google Scholar 

  25. Gorlach A, Holtermann G, Jelkmann W, Hancock JT, Jones SA, Jones OT and Acker H. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2).Biochem J290:771–776, 1993.

    PubMed Central  PubMed  Google Scholar 

  26. Griendling KK, Minieri CA, Ollerenshaw JD and Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141–1148, 1994.

    Article  CAS  PubMed  Google Scholar 

  27. Griendling KK, Sorescu D and Ushio-Fukai M. NAD(P)H oxidase - Role in cardiovascular biol- ogy and disease. Circ Res 86: 494–501, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Grishko V, Solomon M, Breit JF, Killilea DW, LeDoux SP, Wilson GL and Gillespie MN. Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene. FASEBJ15: 1267–1269, 2001.

    Google Scholar 

  29. Grishko V, Solomon M, Wilson GL, LeDoux SP and Gillespie MN. Oxygen radical-induced mitochondrial DNA damage and repair in pulmonary vascular endothelial cell phenotypes. Am J Physiol Lung Cell Mol Physiol 280: L1300–L1308, 2001.

    CAS  PubMed  Google Scholar 

  30. Han D, Antunes F, Daneri F and Cadenas E. Mitochondrial superoxide anion production and release into intermembrane space. Methods Enzymol 349:271–280: 271–280, 2002.

    Google Scholar 

  31. Huang LE, Gu J, Schau M and Bunn HF. Regulation of hypoxia-inducible factor la is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95: 7987–7992, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Guenzler V, Kondo K, Yang HF, Sorokina I, Conaway RC, Conaway JW and Kaelin WG, Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99: 13459–13464, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG, Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2sensing. Science 292: 464–468, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW and Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Jakob U, Muse W, Eser M and Bardwell JC. Chaperone activity with a redox switch. Cell 96: 341–352, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. Jin N, Packer CS and Rhoades RA. Reactive oxygen-mediated contraction in pulmonary arterial smooth muscle: cellular mechanisms. Can J Physiol Pharmacol 69:383–388, 1991.

    Article  CAS  PubMed  Google Scholar 

  37. Jones RD, Hancock JT and Morice AH. NADPH oxidase: a universal oxygen sensor? Free Radie Biol Med 29: 416–424, 2000.

    Article  CAS  Google Scholar 

  38. Jones RD, Thompson JS and Morice AH. The NADPH oxidase inhibitors iodonium diphenyl and cadmium sulphate inhibit hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries. Physiol Res 49: 587–596, 2000.

    CAS  PubMed  Google Scholar 

  39. Lassegue B, Sorescu D, Szoecs K, Yin QQ, Akers M, Zhang Y, Grant SL, Lambeth JD and Griendling KK. Novel gp91phoxhomologues in vascular smooth muscle cells - Noxl mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88: 888–894, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Lauweryns JM, Cokelaere M, Deleersynder M and Liebens M. Intrapulmonary neuro-epithelial bodies in newborn rabbits. Influence of hypoxia, hyperoxia, hypercapnia, nicotine, reserpine, L-DOPAand 5-HTP. Cell Tissue Res 182: 425–440, 1977.

    Article  CAS  PubMed  Google Scholar 

  41. Leach RM, Hill HM, Snetkov VA, Robertson TP and Ward JPT. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol (Lond) 536: 211–224, 2001.

    Article  CAS  Google Scholar 

  42. Lebovitz RM, Zhang H, Vogel H, Cartwright J, Jr., Dionne L, Lu N, Huang S and Matzuk MM. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deflcient mice.Proc Natl Acad Sci USA93: 9782–9787, 1996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH and Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11: 376–381, 1995.

    Article  CAS  PubMed  Google Scholar 

  44. Liu JQ, Sham JS, Shimoda LA, Kuppusamy P and Sylvester JT. Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2003 (in press).

    Google Scholar 

  45. Marshall C, Mamary AJ, Verhoeven AJ and Marshall BE. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Resp Cell Molec Biol 15: 633–644, 1996.

    Article  CAS  Google Scholar 

  46. Maxwell PH, Pugh CW and Ratcliffe PJ. Inducible operation of the erythropoietin 3’ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci USA 90: 2423–2427, 1993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature 20;399: 271–275, 1999.

    Google Scholar 

  48. Michelakis ED, Hampl V, Nsair A, Wu XC, Harry G, Haromy A, Gurtu R and Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90: 1307–1315, 2002.

    Article  CAS  PubMed  Google Scholar 

  49. Mohazzab-H KM, Fayngersh RP, Kaminski PM and Wolin MS. Potential role of NADH oxidoreductase-derived reactive O2species in calf pulmonary arterial PO2-elicited responses. Am J Physiol 269: L637–L644, 1995.

    CAS  Google Scholar 

  50. O’Kelly I, Peers C and Kemp PJ. 02-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung. Am J Physiol Lung Cell Mol Physiol275: L709–L716, 1998.

    Google Scholar 

  51. O’Kelly I, Stephens RH, Peers C and Kemp PJ. Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol Lung Cell Mol Physiol 276: L96–L104, 1999.

    Google Scholar 

  52. Oba T, Ishikawa T and Yamaguchi M. Sulfhydryls associated with H2O2-induced channel activation are on luminal side of ryanodine receptors. Am J Physiol 274: C914–C921, 1998.

    CAS  PubMed  Google Scholar 

  53. Ostergaard H, Henriksen A, Hansen FG and Winther JR. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein.EMBO J20: 5853–5862, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Prabhakar NR. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol 88: 2287–2295, 2000.

    CAS  PubMed  Google Scholar 

  55. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng QW, Dillehay LE, Madan A, Semenza GL and Bedi A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor lalpha. Genes Dev 14: 34–44, 2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Reeve HL, Tolarova S, Nelson DP, Archer S and Weir EK. Redox control of oxygen sensing in the rabbit ductus arteriosus. J Physiol (Lond) 533: 253–261, 2001.

    Article  CAS  Google Scholar 

  57. Reeve HL, Weir EK, Nelson DP, Peterson DA and Archer SL. Opposing effects of oxidants and antioxidants on K+channel activity and tone in rat vascular tissue. Exp Physiol 80: 825–834, 1995.

    CAS  PubMed  Google Scholar 

  58. Rhoades RA, Packer CS and Meiss RA. Pulmonary vascular smooth muscle contractility. Effect of free radicals.Chest93: 94S–95S, 1988.

    Article  CAS  PubMed  Google Scholar 

  59. Rhoades RA, Packer CS, Roepke DA, Jin N and Meiss RA. Reactive oxygen species alter contractile properties of pulmonary arterial smooth muscle. Can J Physiol Pharmacol 68: 1581–1589, 1990.

    Article  CAS  PubMed  Google Scholar 

  60. Rumsey WL, Schlosser C, Nuutinen EM, Robiolio M and Wilson DF. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. J Biol Chem 265: 15392–15399, 1990.

    CAS  PubMed  Google Scholar 

  61. Schroedl C, McClintock DS, Budinger GRS and Chandel NS. Hypoxic but not anoxic stabilization of HIF-1 alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283: L922–L931, 2002.

    CAS  PubMed  Google Scholar 

  62. Schumacker PT. Hypoxia, anoxia, and O2sensing: the search continues. Am J Physiol Lung Cell Mol Physiol 283: L918–L921, 2002.

    CAS  PubMed  Google Scholar 

  63. Schumacker PT and Cain SM. The concept of a critical oxygen delivery. Intensive Care Med 13: 223–229, 1987.

    Article  CAS  PubMed  Google Scholar 

  64. Semenza GL. Perspectives on oxygen sensing. Cell 98: 281–284, 1999.

    Article  CAS  PubMed  Google Scholar 

  65. Semenza GL. HIF-1, O2, and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell 107: 1–3, 2001.

    Article  CAS  PubMed  Google Scholar 

  66. Semenza GL and Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molec Cell Biol 12: 5447–5454, 1992.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y and Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity - Upstream mediators. Circ Res 91: 406–413, 2002.

    Article  CAS  PubMed  Google Scholar 

  68. Sham JSK. Hypoxic pulmonary vasoconstriction - Ups and downs of reactive oxygen species. Circ Res 91: 649–651, 2002.

    Article  CAS  PubMed  Google Scholar 

  69. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK and Lambeth JD. Cell transformation by the superoxide-generating oxidase Moxl. Nature 401: 79–82, 1999.

    Article  CAS  PubMed  Google Scholar 

  70. Tan CC and RatclifFe PJ. Effect of inhibitors of oxidative phosphorylation on erythropoietin mRNA in isolated perfused rat kidneys. Am J Physiol 261: F982–F987, 1991.

    CAS  PubMed  Google Scholar 

  71. Thomas HM, III, Carson RC, Fried ED and Novitch RS. Inhibition of hypoxic pulmonary vasoconstriction by diphenyleneiodonium. Biochem Pharmacol 42: R9–12, 1991.

    Article  CAS  Google Scholar 

  72. Thompson JS, Jones RD, Rogers TK, Hancock J and Morice AH. Inhibition of hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries by diphenyleneiodonium (DPI). Pulm Pharmacol Ther 11: 71–75, 1998.

    Article  CAS  PubMed  Google Scholar 

  73. Turrens JF, Alexandre A and Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237: 408–414, 1985.

    Article  CAS  PubMed  Google Scholar 

  74. Vega-Saenz dM and Rudy B. Modulation of K+channels by hydrogen peroxide. Biochem Biophys Res Commun 186: 1681–1687, 1992.

    Article  Google Scholar 

  75. Waypa GB, Chandel NS and Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88: 1259–1266, 2001.

    Article  CAS  PubMed  Google Scholar 

  76. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes.Circ Res 91: 719–726, 2002.

    Article  CAS  PubMed  Google Scholar 

  77. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT and Schumacker PT. Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91: 719–726, 2002.

    Article  CAS  PubMed  Google Scholar 

  78. Waypa GB and Schumacker PT. O(2) sensing in hypoxic pulmonary vasoconstriction: the mitochondrial door re-opens. Respir Physiolo Neurobiol 132: 81–91, 2002.

    Article  CAS  Google Scholar 

  79. Weir EK and Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: a tale of two channels.FASEB J 9: 183–189, 1995.

    CAS  PubMed  Google Scholar 

  80. Weir EK, Reeve HL, Peterson DA, Michelakis ED, Nelson DP and Archer SL. Pulmonary vasoconstriction, oxygen sensing, and the role of ion channels - Thomas A. Neff Lecture.Chest 114: 17S–22S, 1998.

    Article  CAS  PubMed  Google Scholar 

  81. Wilson DF, Rumsey WL, Green TJ and Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263: 2712–2718, 1988.

    CAS  PubMed  Google Scholar 

  82. Youngson C, Nurse C, Yeger H, Curnutte JT, Vollmer C, Wong V and Cutz E. Immunocyto- chemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells. Microsc Res Tech 37: 101–106, 1997.

    Article  CAS  PubMed  Google Scholar 

  83. Youngson C, Nurse C, Yeger H and Cutz E. Oxygen sensing in airway chemoreceptors. Nature 365: 153–155, 1993.

    Article  CAS  PubMed  Google Scholar 

  84. Zhu H and Bunn HF. Signal transduction - How do cells sense oxygen? Science 20;292: 449–451, 2001.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Schumacker, P.T. (2003). Current Paradigms in Cellular Oxygen Sensing. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics