Skip to main content

The NO − K+ Channel Axis in Pulmonary Arterial Hypertension

Activation by experimental oral therapies

  • Conference paper
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

The prognosis of patients with pulmonary arterial hypertension (PAH) is poor. Available therapies (Ca++ -channel blockers, epoprostenol, bosentan) have limited efficacy or are expensive and associated with significant complications. PAH is characterized by vasoconstriction, thrombosis in-situ and vascular remodeling. En-dothelial-derived nitric oxide (NO) activity is decreased, promoting vasoconstriction and thrombosis. Voltage-gated K+ channels (Kv) are downregulated, causing depolarization, Ca++ -overload and PA smooth muscle cell (PASMC) contraction and proliferation. Augmenting the NO and Kv pathways should cause pulmonary vaso-dilatation and regression of PA remodeling. Several inexpensive oral treatments may be able to enhance the NO axis and/or K+ channel expression/functioi and selective- ly decrease pulmonary vascular resistance (PVR). Oral L-Arginine, NOS’ substrate, improves NO synthesis and functional capacity in humans with PAH. Most of NO’s effects are mediated by cyclic guanosine-monophosphate (c-GMP). cGMP causes vasodilatation by activating K+ channels and lowering cytosolic Ca++ . Sildenafil elevates c-GMP levels by inhibiting type-5 phosphodiesterase, thereby opening BKCachannels and relaxing PAs. In PAH, sildenafil (50mg-po) is as effective and selective a pulmonary vasodilator as inhaled NO. These benefits persist after months of therapy leading to improved functional capacity. 3) Oral Dichloroacetate (DCA), a metabolic modulator, increases expression/function of Kv2. 1 channels and de creases remodeling and PVR in rats with chronic-hypoxic pulmonary hypertension, partially via a tyrosine-kinase-dependent mechanism. These drugs appear safe in humans and may be useful PAH therapies, alone or in combination,

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abman SH. Pathogenesis and treatment of neonatal and postnatal pulmonary hypertension. Curr Opin Pediatr 6: 239–247, 1994.

    CAS  PubMed  Google Scholar 

  2. Archer S and Rich S. Primary Pulmonary Hypertension: A Vascular Biology and Translational Research ”Work in Progress”. Circulation 102: 2781-2791, 2000.

    CAS  PubMed  Google Scholar 

  3. Archer SL. Measurement of nitric oxide in biological models. FASEB J 7: 349–360, 1993.

    CAS  PubMed  Google Scholar 

  4. Archer SL, Djaballah K, Humbert M, Weir KE, Fartoukh M, DalPava-Santucci J, Mercier JC, Simonneau G and Tuan Dinh-Xuan A. Nitric oxide deficiency in fenfluramine- and dexfenflu-ramine-induced pulmonary hypertension. Am J Respir Crit Care Med 158: 1061–1067, 1998.

    CAS  PubMed  Google Scholar 

  5. Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ and Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A 91: 7583–7587, 1994.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Archer SL and Rusch NJ. Potassium Channels in Cardiovascular Biology (first ed. ). New York: Kluwer Academic/Plenum Publishers, 2001, p. 899.

    Google Scholar 

  7. Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL and Hampl V. Molecular identification of the role of voltage-gated K+ channels, Kv1. 5 and Kv2. 1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 101: 2319–2330, 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Archer SL, Weir EK, Reeve HL and Michelakis E. Molecular identification of 02 sensors and 02-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 475: 219–240, 2000.

    CAS  PubMed  Google Scholar 

  9. Attisano L and Wrana JL. Signal transduction by the TGF-beta superfamily. Science 296: 1646– 1647, 2002.

    CAS  PubMed  Google Scholar 

  10. Barron JT, Gu L and Parrillo JE. Cytoplasmic redox potential affects energetics and contractile reactivity of vascular smooth muscle. J Mol Cell Cardiol 29: 2225–2232, 1997.

    CAS  PubMed  Google Scholar 

  11. Barron JT, Gu L and Parrillo JE. Relation of NADH/NAD to contraction in vascular smooth muscle. Mol Cell Biochem 194: 283–290, 1999.

    CAS  Google Scholar 

  12. Barron JT and Parrillo JE. Production of lactic acid and energy metabolism in vascular smooth muscle: effect of dichloroacetate. Am J Physiol 268: H713–719, 1995.

    CAS  PubMed  Google Scholar 

  13. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, Groves BM, Tapson VF, Bourge RC, Brundage BH and et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 334: 296–302, 1996.

    CAS  PubMed  Google Scholar 

  14. Baudouin SV, Bath P, Martin JF, Du Bois R and Evans TW. L-arginine infusion has no effect on systemic haemodynamics in normal volunteers, or systemic and pulmonary haemodynamics in patients with elevated pulmonary vascular resistance. Br J Clin Pharmacol 36: 45–49, 1993

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Black SM, Heidersbach RS, McMullan DM, Bekker JM, Johengen MJ and Fineman JR. Inhalednitric oxide inhibits NOS activity in lambs: a potential mechanism for rebound pulmonary hypertension. Am J Physiol 277: H1849–1856, 1999.

    CAS  PubMed  Google Scholar 

  16. Blumberg FC, Wolf K, Sandner P, Lorenz C, Riegger GA and Pfeifer M. The NO donor molsidomine reduces endothelin-1 gene expression in chronic hypoxic rat lungs. Am J Physiol Lung Cell Mol Physiol 280: L258–263, 2001.

    CAS  PubMed  Google Scholar 

  17. Bocchi EA, Bacal F, Auler Junior JO, Carmone MJ, Bellotti G and Pileggi F. Inhaled nitric oxide leading to pulmonary edema in stable severe heart failure. Am J Cardiol 74: 70–72, 1994.

    CAS  PubMed  Google Scholar 

  18. Boger RH, Mugge A, Bode-Boger SM, Heinzel D, Hoper MM and Frolich JC. Differential systemic and pulmonary hemodynamic effects of L-arginine in patients with coronary artery disease or primary pulmonary hypertension. Int J Clin Pharmacol Ther 34: 323–328, 1996.

    CAS  PubMed  Google Scholar 

  19. Boulanger CM, Heymes C, Benessiano J, Geske RS, Levy BI and Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res 83: 1271–1278, 1998.

    CAS  PubMed  Google Scholar 

  20. Bowker-Kinley MM, Davis WI, Wu P, Harris RA and Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329: 191–196. 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Budts W, Pokreisz P, Nong Z, Van Pelt N, Gillijns H, Gerard R, Lyons R, Collen D, Bloch KD and Janssens S. Aerosol gene transfer with inducible nitric oxide synthase reduces hypoxic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation 102: 2880– 2885, 2000.

    CAS  PubMed  Google Scholar 

  22. Campbell AI, Kuliszewski MA and Stewart DJ. Cell-based gene transfer to the pulmonary vasculature: Endothelial nitric oxide synthase overexpression inhibits monocrotaline-induced pulmonary hypertension [see comments]. Am J Respir Cell Mol Biol 21: 567–575, 1999.

    CAS  PubMed  Google Scholar 

  23. Channick RN and Rubin LJ. New and experimental therapies for pulmonary hypertension. Clin Chest Med 22: 539–545, 2001.

    CAS  Google Scholar 

  24. Cheitlin MD, Hutter AM, Jr, Brindis RG, Ganz P, Kaul S, Russell RO, Jr. and Zusman RM. ACC/AHA expert consensus document. Use of sildenafil (Viagra) in patients with cardio-vascular disease. American College of Cardiology/American Heart Association. J Am Coll Cardiol 33: 273–282, 1999.

    CAS  PubMed  Google Scholar 

  25. Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF and Tuder RM. Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endo-thelial cell growth. Am J Pathol 155: 411–419, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, Hodge SE and Knowles JA. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67: 737–744, 2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Dresdale D, Schultz M and Michtom R. Primary pulmonary hypertension, clinical and hemodynamic study. Am J Med 11: 686–705, 1951.

    CAS  PubMed  Google Scholar 

  28. Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW and Thistlethwaite PA. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348: 500–509, 2003.

    CAS  PubMed  Google Scholar 

  29. Duchen MR. Mitochondria and Ca(2+) in cell physiology and pathophysiology. Cell Calcium 28: 339–348, 2000.

    CAS  PubMed  Google Scholar 

  30. Fagan KA, Fouty BW, Tyler RC, Morris KG, Jr, Hepler LK, Sato K, LeCras TD, Abman SH, Weinberger HD, Huang PL, McMurtry IF and Rodman DM. The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest 103: 291–299, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Forstermann U, Boissel JP and Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). Faseb J 12: 773–790, 1998.

    CAS  PubMed  Google Scholar 

  32. Frasch HF, Marshall C and Marshall BE. Endothelin-1 is elevated in monocrotaline pulmonary hypertension. Am J Physiol 276: L304–310, 1999.

    CAS  PubMed  Google Scholar 

  33. Fukuo K, Hata S, Suhara T, Nakahashi T, Shinto Y, Tsujimoto Y, Morimoto S and Ogihara T. Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension 27: 823–826, 1996.

    CAS  PubMed  Google Scholar 

  34. Garg UC and Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777, 1989.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Geraci MW, Moore M, Gesell T, Yeager ME, Alger L, Golpon H, Gao B, Loyd JE, Tuder RM and Voelkel NF. Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ Res 88: 555–562, 2001.

    CAS  PubMed  Google Scholar 

  36. Ghofrani HA, Wiedemann R, Rose F, Schermuly RT, Olschewski H, Weissmann N, Gunther A, Walmrath D, Seeger W and Grimminger F. Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomised controlled trial. Lancet 360: 895–900, 2002.

    CAS  PubMed  Google Scholar 

  37. Giaid A and Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N EnglJ Med 333: 214–221, 1995.

    CAS  Google Scholar 

  38. Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R, Shennib H, Kimura S, Masaki T, Duguid WP and Stewart DJ. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328: 1732–1739, 1993.

    CAS  PubMed  Google Scholar 

  39. Gibson A. Phosphodiesterase 5 inhibitors and nitrergic transmission-from zaprinast to sildenafil. Eur J Pharmacol 411: 1–10, 2001.

    CAS  PubMed  Google Scholar 

  40. Hampl V and Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80: 1337–1372, 2000.

    CAS  PubMed  Google Scholar 

  41. Higenbottam T and Cremona G. Acute and chronic hypoxic pulmonary hypertension. Eur Respir J 6: 1207–1212, 1993.

    CAS  PubMed  Google Scholar 

  42. Hirata Y, Emori T, Eguchi S, Kanno K, Imai T, Ohta K and Marumo F. Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 91: 1367–1373, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Holzmann A, Manktelow C, Weimann J, Bloch KD and Zapol WM. Inhibition of lung phospho-diesterase improves responsiveness to inhaled nitric oxide in isolated-perfused lungs from rats challenged with endotoxin. Intensive Care Med 27: 251–257, 2001.

    CAS  PubMed  Google Scholar 

  44. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traver-so G and Vogelstein B. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28: 184–187, 2001.

    CAS  PubMed  Google Scholar 

  45. Ichinose F, Erana-Garcia J, Hromi J, Raveh Y, Jones R, Krim L, Clark MW, Winkler JD, Bloch KD and Zapol WM. Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 29: 1000–1005, 2001.

    CAS  PubMed  Google Scholar 

  46. Isaacson TC, Hampl V, Weir EK, Nelson DP and Archer SL. Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol 76: 933–940, 1994.

    CAS  PubMed  Google Scholar 

  47. Janssens SP, Bloch KD, Nong Z, Gerard RD, Zoldhelyi P and Collen D. Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest 98: 317–324, 1996.

    CAS  Google Scholar 

  48. Kawai N, Bloch DB, Filippov G, Rabkina D, Suen HC, Losty PD, Janssens SP, Zapol WM, de la Monte S and Bloch KD. Constitutive endothelial nitric oxide synthase gene expression is regulated during lung development. Am J Physiol 268: L589–595, 1995.

    CAS  PubMed  Google Scholar 

  49. Kimura S, Ohtuki N, Nezu A, Tanaka M and Takeshita S. Clinical and radiologic improvements in mitochondrial encephalomyelopathy following sodium dichloroacetate therapy. Brain Dev 19: 535–540, 1997.

    CAS  PubMed  Google Scholar 

  50. Kleinsasser A and Loeckinger A. Sildenafil for lung fibrosis and pulmonary hypertension. Lancet 361: 262–263.

    Google Scholar 

  51. Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B, Sugarbaker D and Stamler JS. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 9: 371–377, 1993.

    CAS  PubMed  Google Scholar 

  52. Kourembanas S, McQuillan LP, Leung GK and Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 92: 99–104, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Kuroda Y, Ito M, Toshima K, Takeda E, Naito E, Hwang TJ, Hashimoto T, Miyao M, Masuda M, Yamashita K and et al. Treatment of chronic congenital lactic acidosis by oral administration of dichloroacetate. J Inherit Metab Dis 9: 244–252, 1986.

    CAS  PubMed  Google Scholar 

  54. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, 3rd, Loyd JE, Nichols WC and Trembath RC. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 26: 81–84, 2000.

    CAS  PubMed  Google Scholar 

  55. Le Cras TD, Kim DH, Gebb S, Markham NE, Shannon JM, Tuder RM and Abman SH. Abnormal lung growth and the development of pulmonary hypertension in the Fawn-Hooded rat. Am JPhysiol 277: L709–718, 1999.

    Google Scholar 

  56. Le Cras TD, Kim DH, Markham NE and Abman AS. Early abnormalities of pulmonary vascular development in the Fawn- Hooded rat raised at Denver’s altitude. Am J Physiol Lung Cell Mol Physiol 279: L283–291, 2000.

    PubMed  Google Scholar 

  57. Le Cras TD, Xue C, Rengasamy A and Johns RA. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol 270: L164–170, 1996.

    PubMed  Google Scholar 

  58. Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF and Tuder RM. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101: 927–934, 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lepore JJ, Maroo A, Pereira NL, Ginns LC, Dec GW, Zapol WM, Bloch KD and Semigran MJ. Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. Am J Cardiol 90: 677–680, 2002.

    CAS  PubMed  Google Scholar 

  60. Loh E, Stamler JS, Hare JM, Loscalzo J and Colucci WS. Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunction. Circulation 90: 2780–2785, 1994.

    CAS  PubMed  Google Scholar 

  61. Lopaschuk GD. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Am J Cardiol 82: 14K–17K, 1998.

    CAS  PubMed  Google Scholar 

  62. Lunn RJ. Inhaled nitric oxide therapy. Mayo Clin Proc 70: 247–255, 1995.

    CAS  PubMed  Google Scholar 

  63. McCaffrey TA, Du B, Consigli S, Szabo P, Bray PJ, Hartner L, Weksler BB, Sanborn TA, Bergman G and Bush HL, Jr. Genomic instability in the type II TGF-beta 1 receptor gene in athero- sclerotic and restenotic vascular cells. J Clin Invest 100: 2182–2188, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. McClellan KJ and Plosker GL. Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. Drugs 58: 143–157, 1999.

    CAS  PubMed  Google Scholar 

  65. McCormack JG, Stanley WC and Wolff AA. Ranolazine: a novel metabolic modulator for the treatment of angina. Gen Pharmacol 30: 639–645, 1998.

    CAS  PubMed  Google Scholar 

  66. McMullan DM, Bekker JM, Johengen MJ, Hendricks-Munoz K, Gerrets R, Black SM and Fineman JR. Inhaled nitric oxide-induced rebound pulmonary hypertension: role for endothelin-1. Am J Physiol Heart Circ Physiol 280: H777–785, 2001.

    CAS  PubMed  Google Scholar 

  67. Mehta S, Stewart DJ, Langleben D and Levy RD. Short-term pulmonary vasodilation with Larginine in pulmonary hypertension. Circulation 92: 1539–1545, 1995.

    CAS  PubMed  Google Scholar 

  68. Mehta S, Stewart DJ and Levy RD. The hypotensive effect of L-arginine is associated with increased expired nitric oxide in humans. Chest 109: 1550–1555, 1996.

    CAS  PubMed  Google Scholar 

  69. Melillo G, Musso T, Sica A, Taylor LS, Cox GW and Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: 1683–1693, 1995.

    CAS  PubMed  Google Scholar 

  70. Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K and Archer S. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105: 2398–2403, 2002.

    CAS  PubMed  Google Scholar 

  71. Michelakis ED, Archer SL and Weir EK. Acute hypoxic pulmonary vasoconstriction: a model of oxygen sensing. Physiol Res 44: 361–367, 1995.

    CAS  PubMed  Google Scholar 

  72. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R and Archer SL. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90: 1307–1315, 2002.

    CAS  PubMed  Google Scholar 

  73. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R and Archer SL. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105: 244–250, 2002.

    CAS  PubMed  Google Scholar 

  74. Michelakis ED and Weir EK. Anorectic drugs and pulmonary hypertension from the bedside to the bench. Am J Med Sci 321: 292–299, 2001.

    CAS  PubMed  Google Scholar 

  75. Michelakis ED and Weir EK. The pathobiology of pulmonary hypertension. Smooth muscle cells and ion channels. Clin Chest Med 22: 419–432, 2001.

    CAS  PubMed  Google Scholar 

  76. Miller OI, Tang SF, Keech A and Celermajer DS. Rebound pulmonary hypertension on with-drawal from inhaled nitric oxide. Lancet 346: 51–52, 1995.

    CAS  PubMed  Google Scholar 

  77. Mitani Y, Maruyama K and Sakurai M. Prolonged administration of L-arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation 96: 689–697, 1997.

    CAS  PubMed  Google Scholar 

  78. Molteni A, Ward WF, Ts’ao CH, Port CD and Solliday NH. Monocrotaline-induced pulmonary endothelial dysfunction in rats. Proc Soc Exp Biol Med 176: 88–94, 1984.

    CAS  PubMed  Google Scholar 

  79. Moncada S and Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012, 1993.

    CAS  PubMed  Google Scholar 

  80. Montague T, DeAlmeida J, Lopaschuk G, Witkowski F, Walker D, Ackman M, Humen D, Dzavik V and Teo K. Enhanced glucose oxidation in exercise-induced myocardial ischemia. Can J Cardiol 10: 913–919, 1994.

    CAS  PubMed  Google Scholar 

  81. Mori Y, Folco E and Koren G. GH3 cell-specific expression of Kv l. 5 gene. Regulation by a silencer containing a dinucleotide repetitive element. J Biol Chem 270: 27788–27796, 1995.

    CAS  PubMed  Google Scholar 

  82. Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK and Trembath RC. Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-beta(l) and bone morphogenetic proteins. Circulation 104: 790–795, 2001.

    CAS  PubMed  Google Scholar 

  83. Murad F. The 1996 Albert Lasker Medical Research Awards. Signal transduction using nitric oxide and cyclic guanosine monophosphate. JAMA 276: 1189–1192, 1996.

    CAS  PubMed  Google Scholar 

  84. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Kakishita M, Fukushima K, Okano Y, Nakanishi N, Miyatake K and Kangawa K. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102: 865–870, 2000.

    CAS  PubMed  Google Scholar 

  85. Nagaya N, Uematsu M, Oya H, Sato N, Sakamaki F, Kyotani S, Ueno K, Nakanishi N, Yamagishi M and Miyatake K. Short-term oral administration of L-arginine improves hemodynamics and exercise capacity in patients with precapillary pulmonary hypertension. Am J Respir Crit Care Med 163: 887–891, 2001.

    CAS  PubMed  Google Scholar 

  86. Padma-Nathan H, McMurray JG, Pullman WE, Whitaker JS, Saoud JB, Ferguson KM and Rosen RC. On-demand IC351 (Cialis) enhances erectile function in patients with erectile dysfunction. Int J Impot Res 13: 2–9, 2001.

    CAS  PubMed  Google Scholar 

  87. Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D and Wallwork J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 338: 1173–1174, 1991.

    CAS  PubMed  Google Scholar 

  88. Phillips BG, Kato M, Pesek CA, Winnicki M, Narkiewicz K, Davison D and Somers VK. Sym-pathetic activation by sildenafil. Circulation 102: 3068–3073, 2000.

    CAS  PubMed  Google Scholar 

  89. Pollman MJ, Yamada T, Horiuchi M and Gibbons GH. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Rey 79: 748–756, 1996.

    CAS  Google Scholar 

  90. Porst H, Rosen R, Padma-Nathan H, Goldstein I, Giuliano F, Ulbrich E, Bandel and The Var-denafil Study Group T. The efficacy and tolerability of vardenafil, a new, oral, selective phos-phodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first at-home clinical trial. Int J Impot Res 13: 192–199, 2001.

    CAS  PubMed  Google Scholar 

  91. Pozeg Z, Michelakis E, McMurtry M, Thébaud B, PhD, Wu X-C, Dyck J, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A and Archer S. In vivo Gene Transfer of the 02-Sensitive Potassium Channel Kvl. 5 Reduces Pulmonary Hypertension and Restores Hypoxic Pulmonary Vasoconstriction in Chronically Hypoxic Rats. Circulation : (in press), 2003.

    Google Scholar 

  92. Prasad S, Wilkinson J and Gatzoulis MA. Sildenafil in primary pulmonary hypertension. N Engl J Med 343: 1342, 2000.

    CAS  PubMed  Google Scholar 

  93. Preston IR, Klinger JR, Houtchens J, Nelson D, Mehta S and Hill NS. Pulmonary edema caused by inhaled nitric oxide therapy in two patients with pulmonary hypertension associated with the CREST syndrome. Chest 121: 656–659, 2002.

    PubMed  Google Scholar 

  94. Quinlan TR, Li D, Laubach VE, Shesely EG, Zhou N and Johns RA. eNOS-deficient mice show reduced pulmonary vascular proliferation and remodeling to chronic hypoxia. Am J Physiol Lunz Cell Mol Physiol 279: L641–650, 2000.

    CAS  Google Scholar 

  95. Rairigh RL, Le Cras TD, Ivy DD, Kinsella JP, Richter G, Horan MP, Fan ID and Abman SH. Role of inducible nitric oxide synthase in regulation of pulmonary vascular tone in the late gestation ovine fetus. J Clin Invest 101: 15–21, 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Rector TS, Bank AJ, Mullen KA, Tschumperlin LK, Sih R, Pillai K and Kubo SH. Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 93: 2135–2141, 1996.

    CAS  PubMed  Google Scholar 

  97. Reeve HL, Weir EK, Nelson DP, Peterson DA and Archer SL. Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp Physiol 80: 825–834, 1995.

    CAS  PubMed  Google Scholar 

  98. Rengasamy A and Johns RA. Characterization of endothelium-derived relaxing factor/nitric oxide synthase from bovine cerebellum and mechanism of modulation by high and low oxygen tensions. J Pharmacol Exp Ther 259: 310–316, 1991.

    CAS  PubMed  Google Scholar 

  99. Rengasamy A and Johns RA. Determination of Km for oxygen of nitric oxide synthase iso-forms. J Pharmacol Exp Ther 276: 30–33, 1996.

    CAS  PubMed  Google Scholar 

  100. Resta TC, Gonzales RJ, Dail WG, Sanders TC and Walker BR. Selective upregulation of arterial endothelial nitric oxide synthase in pulmonary hypertension. Am J Physiol 272: H806–813, 1997.

    CAS  PubMed  Google Scholar 

  101. Ricciardi MJ, Knight BP, Martinez FJ and Rubenfire M. Inhaled nitric oxide in primary pulmonary hypertension: a safe and effective agent for predicting response to nifedipine. J Am Coll Cardiol 32: 1068–1073, 1998.

    CAS  PubMed  Google Scholar 

  102. Rich S. Primary Pulmonary Hypertension: Executive Summary from the World Symposium - Primary Pulmonary Hypertension 1998. World Health Organization , 1998.

    Google Scholar 

  103. Rich S, Kaufmann E and Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327: 76–81, 1992.

    CAS  PubMed  Google Scholar 

  104. Roberts JD, Jr, Chiche JD, Weimann J, Steudel W, Zapol WM and Bloch KD. Nitric oxide in-halation decreases pulmonary artery remodeling in the injured lungs of rat pups. Circ Res 87: 140–145, 2000.

    CAS  PubMed  Google Scholar 

  105. Robertson BE, Schubert R, Hescheler J and Nelson M. cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am. J. Physiol . 265: C299–C303, 1993.

    CAS  PubMed  Google Scholar 

  106. Rozanski GJ, Xu Z, Zhang K and Patel KP Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol 274: H259–265, 1998.

    CAS  PubMed  Google Scholar 

  107. Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, Landzberg M and Simonneau G. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346: 896–903, 2002.

    CAS  PubMed  Google Scholar 

  108. Sanchez LS, de la Monte SM, Filippov G, Jones RC, Zapol WM and Bloch KD. Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pediatr Res 43: 163–168, 1998.

    CAS  PubMed  Google Scholar 

  109. Schultze AE and Roth RA. Chronic pulmonary hypertension--the monocrotaline model and in-volvement of the hemostatic system. J Toxicol Environ Health B Crit Rev 1: 271–346, 1998.

    CAS  PubMed  Google Scholar 

  110. Semigran MJ, Cockrill BA, Kacmarek R, Thompson BT, Zapol WM, Dec GW and Fifer MA. Hemodynamic effects of inhaled nitric oxide in heart failure. J Am Coll Cardiol 24: 982–988, 1994.

    CAS  PubMed  Google Scholar 

  111. Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM and Kass DA. Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 15: 1718–1726, 2001.

    CAS  PubMed  Google Scholar 

  112. Sharma RV, Tan E, Fang S, Gurjar MV and Bhalla RC. NOS gene transfer inhibits expression of cell cycle regulatory molecules in vascular smooth muscle cells. Am J Physiol 276: H1450–1459, 1999.

    CAS  PubMed  Google Scholar 

  113. Sheehy AM, Burson MA and Black SM. Nitric oxide exposure inhibits endothelial NOS activity but not gene expression: a role for superoxide. Am J Physiol 274: L833–841, 1998.

    CAS  PubMed  Google Scholar 

  114. Sherman TS, Chen Z, Yuhanna IS, Lau KS, Margraf LR and Shaul PW. Nitric oxide synthase isoform expression in the developing lung epithelium. Am J Physiol 276: L383–390, 1999.

    CAS  PubMed  Google Scholar 

  115. Sitbon O, Humbert M, Jagot JL, Taravella O, Fartoukh M, Parent F, Herve P and Simonneau G. Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension. Eur Respir J 12: 265–270, 1998.

    CAS  PubMed  Google Scholar 

  116. Stacpoole PW. Review of the pharmacologic and therapeutic effects of diisopropylammonium dichloroacetate (DIPA). J Clin Pharmacol J New Drugs 9: 282–291, 1969.

    CAS  PubMed  Google Scholar 

  117. Stacpoole PW, Lorenz AC, Thomas RG and Harman EM. Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 108: 58–63, 1988.

    CAS  PubMed  Google Scholar 

  118. Steinhorn RH, Millard SL and Morin FC, 3rd. Persistent pulmonary hypertension of the new-born. Role of nitric oxide and endothelin in pathophysiology and treatment. Clin Perinatol 22: 405–428. 1995.

    CAS  PubMed  Google Scholar 

  119. Steinhorn RH, Morin FC, 3rd and Fineman JR. Models of persistent pulmonary hypertension of the newborn (PPHN) and the role of cyclic guanosine monophosphate (GMP) in pulmonary vasorelaxation. Semin Perinatol 21: 393–408, 1997.

    CAS  PubMed  Google Scholar 

  120. Stelzner T, Hofmann TA, Brown D, Deng A and Jacob HJ. Genetic determinants of pulmonary hypertension in fawn-hooded rats. Chest 111: 96S, 1997.

    CAS  PubMed  Google Scholar 

  121. Steudel W, Hurford WE and Zapol WM. Inhaled nitric oxide: basic biology and clinical applications. Anesthesiology 91: 1090–1121, 1999.

    CAS  PubMed  Google Scholar 

  122. Steudel W, Ichinose F, Huang PL, Hurford WE, Jones RC, Bevan JA, Fishman MC and Zapol WM. Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res 81: 34–41, 1997.

    CAS  PubMed  Google Scholar 

  123. Stewart DJ, Levy RD, Cernacek P and Langleben D. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 114: 464–469, 1991.

    CAS  PubMed  Google Scholar 

  124. Surdacki A, Zmudka K, Bieron K, Kostka-Trabka E, Dubiel JS and Gryglewski RJ. Lack of beneficial effects of L-arginine infusion in primary pulmonary hypertension. Wien Klin Wochenschr 106: 521–526, 1994.

    CAS  PubMed  Google Scholar 

  125. Ten Dijke P, Goumans MJ, Itoh F and Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol 191: 1–16, 2002.

    CAS  PubMed  Google Scholar 

  126. Thomas AQ, Gaddipati R, Newman JH and Loyd JE. Genetics of primary pulmonary hypertension. Clin Chest Med 22: 477–491, ix, 2001.

    CAS  PubMed  Google Scholar 

  127. Thomson JR, Machado RD, Pauciulo MW, Morgan NV, Humbert M, Elliott GC, Ward K, Yacoub M, Mikhail G, Rogers P, Newman J, Wheeler L, Higenbottam T, Gibbs JS, Egan J, Crozier A, Peacock A, Allcock R, Corris P, Loyd JE, Trembath RC and Nichols WC. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-IL a receptor member of the TGF-beta family. J Med Genet 37: 741–745, 2000.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Trembath RC, Thomson JR, Machado RD, Morgan NV, Atkinson C, Winship I, Simonneau G, Galie N, Loyd JE, Humbert M, Nichols WC, Morrell NW, Berg J, Manes A, McGaughran J, Pauciulo M and Wheeler L. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N Engl J Med 345: 325–334, 2001.

    CAS  PubMed  Google Scholar 

  129. Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D and Voelkel NF. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159: 1925–1932, 1999.

    CAS  PubMed  Google Scholar 

  130. Tyler RC, Muramatsu M, Abman SH, Stelzner TJ, Rodman DM, Bloch KD and McMurtry IF. Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension. Am J Physiol 276: L297–303, 1999.

    CAS  PubMed  Google Scholar 

  131. van Suylen RJ, Smits JF and Daemen MJ. Pulmonary artery remodeling differs in hypoxia- and monocrotaline- induced pulmonary hypertension. Am J Respir Crit Care Med 157: 1423–1428, 1998.

    PubMed  Google Scholar 

  132. Vary TC, Siegel JH, Tall BD and Morris JG. Metabolic effects of partial reversal of pyruvate dehydrogenase activity by dichloroacetate in sepsis. Circ Shock 24: 3–18, 1988.

    CAS  PubMed  Google Scholar 

  133. Vary TC, Siegel JH, Zechnich A, Tall BD, Morris JG, Placko R and Jawor D. Pharmacological reversal of abnormal glucose regulation, BCAA utilization, and muscle catabolism in sepsis by dichloroacetate. J Trauma 28: 1301–1311, 1988.

    CAS  PubMed  Google Scholar 

  134. Wargovich TJ, MacDonald RG, Hill JA, Feldman RL, Stacpoole PW and Pepine CJ. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol 61: 65–70, 1988.

    CAS  PubMed  Google Scholar 

  135. Wedgwood S, McMullan DM, Bekker JM, Fineman JR and Black SM. Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy. Circ Res 89: 357–364, 2001.

    CAS  PubMed  Google Scholar 

  136. Weir EK and Archer SL. Hypoxic pulmonary vasoconstriction: A tale of two channels. FASEB J 9: 180–182, 1995.

    Google Scholar 

  137. Weir EK and Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9: 183–189, 1995.

    CAS  PubMed  Google Scholar 

  138. Weir EK, Reeve HL, Huang J, Michelakis E, Nelson DP, Hampl V and Archer SL. Anorexic agents Aminorex, Fenfluramine and Dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation 94: 2216–2220, 1996.

    CAS  PubMed  Google Scholar 

  139. Wiedemann R, Ghofrani HA, Weissmann N, Schermuly R, Quanz K, Grimminger F, Seeger W and Olschewski H. Atrial natriuretic peptide in severe primary and nonprimary pulmonary hypertension: response to iloprost inhalation. J Am Coll Cardiol 38: 1130–1136, 2001.

    CAS  PubMed  Google Scholar 

  140. Wilkens H, Guth A, Konig J, Forestier N, Cremers B, Hennen B, Bohm M and Sybrecht GW. Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation 104: 1218–1222, 2001.

    CAS  PubMed  Google Scholar 

  141. Wolin MS. Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vase Biol 20: 1430–1442, 2000.

    CAS  Google Scholar 

  142. Wong J, Vanderford PA, Winters J, Soifer SJ and Fineman JR. Endothelin b receptor agonists produce pulmonary vasodilation in intact newborn lambs with pulmonary hypertension. J Cardiovasc Pharmacol 25: 207–215, 1995.

    CAS  PubMed  Google Scholar 

  143. Wu X, Haystead TA, Nakamoto RK, Somlyo AV and Somlyo AP Acceleration of myosin light chain dephosphorylation and relaxation of smooth muscle by telokin. Synergism with cyclic nucleotide-activated kinase. J Biol Chem 273: 11362–11369, 1998.

    CAS  PubMed  Google Scholar 

  144. Xue C and Johns RA. Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333: 1642–1644, 1995.

    CAS  PubMed  Google Scholar 

  145. Xue C, Rengasamy A, Le Cras TD, Koberna PA, Dailey GC and Johns RA. Distribution of NOS in normoxic vs. hypoxic rat lung: upregulation of NOS by chronic hypoxia. Am J Physiol 267: L667–678, 1994.

    CAS  PubMed  Google Scholar 

  146. Yeager ME, Halley GR, Golpon HA, Voelkel NF and Tuder RM. Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ Res 88: E2–E11, 2001.

    CAS  PubMed  Google Scholar 

  147. Yu AY, Frid MG, Shimoda LA, Wiener CM, Stenmark K and Semenza GL. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 275: L818–826, 1998.

    CAS  PubMed  Google Scholar 

  148. Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV, Jr, Gaine SP, Orens JB and Rubin LJ. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98: 1400–1406, 1998.

    CAS  PubMed  Google Scholar 

  149. Yuan X-J, Goldman W, Tod ML, Rubin LJ and Blaustein MP. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am. J. Physiol 264: L116–L123. 1993.

    CAS  PubMed  Google Scholar 

  150. Yuan XJ, Wang J, Juhaszova M, Gaine SP and Rubin LJ. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351: 726–727, 1998.

    CAS  PubMed  Google Scholar 

  151. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A and Wilkins MR. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation 104: 424–428, 2001.

    CAS  PubMed  Google Scholar 

  152. Zhao L, Mason NA, Strange JW, Walker H and Wilkins MR. Beneficial effects of phosphordiesterase 5 inhibition in pulmonary hypertension are influenced by natriuretic Peptide activity. Circulation 107: 234–237, 2003.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Michelakis, E.D., McMurtry, M.S., Sonnenberg, B., Archer, S.L. (2003). The NO − K+ Channel Axis in Pulmonary Arterial Hypertension. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics