Skip to main content

Hypoxic Regulation of Blood Flow in Humans

α-adrenergic receptors and functional sympatholysis in skeletal muscle

  • Conference paper
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 543))

Abstract

Acute exposure to hypoxia evokes changes in local vasodilator and neural vasoconstrictor factors that significantly influence vascular tone. In humans, the net effect of acute systemic hypoxia is limb vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity and norepinephrine spillover. In this context, some studies in experimental animals and humans have documented that hypoxia can reduce the vasoconstrictor responses to sympathetic nerve stimulation, as well as exogenous α-adrenergic agonist administration (functional sympatholysis). In contrast, other studies have provided evidence that sympathetic vasoconstriction is well preserved during hypoxia. Recently, our laboratory demonstrated that local blockade of α-adrenergic receptors significantly augments the forearm vasodilator response to hypoxia, indicating that sympathetic vasoconstriction persists and can restrain skeletal muscle blood flow under these conditions. Therefore, we revisited this issue and performed a study designed to test the hypothesis that forearm vasoconstrictor responses to local endogenous norepinephrine release are not reduced during systemic hypoxia in humans. To do so, we used selective intra-arterial infusions tyramine to evoke local endogenous norepinephrine release and measured the forearm vasoconstrictor responses during various levels of hypoxia (85, 80, and 75 % O2 saturation). Our findings demonstrate that forearm post-junctional a-adrenergic vasoconstrictor responsiveness is well preserved during systemic hypoxia in healthy humans. The implications of these findings with respect to arterial blood pressure regulation and functional sympatholysis in skeletal muscle are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson KM and Faber JE. Differential sensitivity of arteriolar alpha 1- and alpha 2-adreno-ceptor constriction to metabolic inhibition during rat skeletal muscle contraction. Circ Res 69: 178–184, 1991.

    CAS  Google Scholar 

  2. Banzett RB, Garcia RT, and Moosavi SH. Simple contrivance “clamps” endtidal PC02 and P02 despite rapid changes in ventilation. J Appl Physiol 88: 1597–1600, 2000.

    CAS  PubMed  Google Scholar 

  3. Blauw GJ, Westendorp RGJ, Simons M, Chang PC, Frolich M, and Meinders E. B-adrenergic receptors contribute to hypoxaemia induced vasodilatation in man. Br J Clin Pharmacol 40: 453–458, 1995.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Blitzer ML, Lee DS, and Creager MA. Endothelium-derived nitric oxide mediates hypoxic vasodilation of resistance vessels in humans. Am J Physiol 271: H1182–H1185, 1996.

    CAS  PubMed  Google Scholar 

  5. Buckwalter JB, Naik JS, Valic Z, and Clifford PS. Exercise attenuates alpha-adrenergic-receptor responsiveness in skeletal muscle vasculature. J Appl Physiol 90: 172–178, 2001.

    CAS  PubMed  Google Scholar 

  6. Dietz NM, Rivera JM, Eggener ES, Fix RJ, Warner DO, and Joyner MJ. Nitric oxide contributes to the rise in forearm blood flow during mental stress in humans. J Physiol 480: 361–368, 1994.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Dinenno FA, Dietz NM, and Joyner MJ. Aging and forearm post-junctional α-adrenergic vasoconstriction in healthy men. Circulation 106: 1349–1354, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Dinenno FA, Eisenach JH, Dietz NM, and Joyner MJ. Post-junctional α-adrenoceptors and basal limb vascular tone in healthy men. J Physiol 540: 1103–1110, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dinenno FA, Joyner MJ, and Halliwill JR. Failure of systemic hypoxia to blunt α-adrenergic vasoconstriction in the human forearm. J Physiol, in press.

    Google Scholar 

  10. Fredricks KT, Liu Y, and Lombard JH. Response of extraparenchymal resistance arteries of rat skeletal muscle to reduced PO2. Am J Physiol 267: H706–H715, 1994.

    CAS  PubMed  Google Scholar 

  11. Frewin DB and Whelan RF. The mechanism of action of tyramine on the blood vessels of the forearm in man. Br J Pharmacol 22: 105–116, 1968.

    Google Scholar 

  12. Greenfield ADM, Whitney RJ, and Mowbray JF. Methods for the investigation of peripheral blood flow. BrMed Bull 19: 101–109, 1963.

    CAS  Google Scholar 

  13. Halliwill JR. Hypoxia, skeletal muscle circulation, and the role of epinephrine. Hypoxia sym-posium, edited by R. C. Roach, P. D. Wagner and P. H. Hackett, Banff, Canada. Academic/ Plenum Publishers, 2003.

    Google Scholar 

  14. Halliwill JR and Minson CT. Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. J Appl Physiol 93: 857–864, 2002.

    PubMed  Google Scholar 

  15. Hansen J, Sander M, Hald CF, Victor RG, and Thomas GD. Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia. J Physiol 527: 387-396, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hansen J, Thomas GD, Harris SA, Parsons WJ, and Victor RG. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest 98: 584-496, 1996.

    Article  Google Scholar 

  17. Heistad DD, Abboud FM, Mark AL, and Schmid PG. Effect of hypoxemia on responses to norepinephrine and angiotensin in coronary and muscular vessels. J Pharmacol Exp Ther 193: 941–950, 1975.

    CAS  PubMed  Google Scholar 

  18. Heistad DD and Wheeler RC. Effect of acute hypoxia on vascular responsiveness in man. J Clin Invest 49: 1252–1265,1970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jie K, van Brummelen P, Vermey P, Timmermans P, and van Zwieten PA. Postsynaptic alpha 1 and alpha2-adrenoceptors in human blood vessels: interactions with exogenous and endogenous catecholamines. Eur J Clin Invest 17: 174–181, 1987.

    Article  CAS  PubMed  Google Scholar 

  20. Joyner MJ, Nauss LA, Warner MA, and Warner DO. Sympathetic modulation of blood flow and 02 uptake in rhythmically contracting human forearm muscles. Am J Physiol 263: H1078–83, 1992.

    CAS  PubMed  Google Scholar 

  21. Joyner MJ and Weiling W. Increased muscle perfusion reduces muscle sympathetic nerve activity during handgripping. J Appl Physiol 75: 2450–2455, 1993.

    CAS  PubMed  Google Scholar 

  22. Leuenberger U, Gleeson K, Wroblewski K, Prophet S, Zelis R, Zwillich C, and Sinoway LI. Norepinephrine clearance is increased during acute hypoxemia in humans. Am J Physiol 261: H1659–H1664, 1991.

    CAS  PubMed  Google Scholar 

  23. Marriott JF and Marshall JM. Differential effects of hypoxia upon contraction evoked by potassium and noradrenaline in rabbit arteries in vitro. J Physiol 422: 1–13, 1990.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. McGillivray-Anderson KM and Faber JE. Effects of acidosis on contraction of microvascular smooth muscle by alpha 1- and alpha 2-adrenoceptors. Implications for neural and metabolic regulation. Circ Res 66: 1643–1657, 1990.

    Article  CAS  PubMed  Google Scholar 

  25. Minson CT, Halliwill JR, Young TM, and Joyner MJ. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation 101:862–868, 2000.

    Article  CAS  PubMed  Google Scholar 

  26. Ray CJ, Abbas MR, Coney AM, and Marshall JM. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies. J Physiol 544: 195–209,2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Remensnyder JP, Mitchell JH, and Sarnoff SJ. Functional sympatholysis during muscular activity. CircRes 11: 370–380, 1962.

    CAS  Google Scholar 

  28. Remsburg S, Launois SH, and Weiss JW. Patients with obstructive sleep apnea have an abnormal peripheral vascular response to hypoxia. J Appl Physiol 87: 1148–1153, 1999.

    CAS  PubMed  Google Scholar 

  29. Rosenmeier JB, Dinenno FA, Fritzlar SJ, and Joyner MJ. α1 - and α2-adrenergic vasoconstriction is blunted in contracting human muscle. J Physiol 547: 971–976, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Rowell LB and Blackmon JR. Hypotension induced by central hypovolaemia and hypoxaemia. Clin Physiol 9: 269–277, 1989.

    Article  CAS  PubMed  Google Scholar 

  31. Rowell LB and Blackmon JR. Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am J Physiol 251: H562–H570, 1986.

    CAS  PubMed  Google Scholar 

  32. Rowell LB, Johnson DG, Chase PB, Comess KA, and Seals DR. Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. J Appl Physiol 66: 1736–1743, 1989.

    CAS  PubMed  Google Scholar 

  33. Rowell LB and Seals DR. Sympathetic activity during graded central hypovolemia in hypoxia humans. Am J Physiol 259: H1197–H1206, 1990.

    CAS  PubMed  Google Scholar 

  34. Saito M, Mano T, Iwase S, Koga K, Abe H, and Yamazaki Y. Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol 65: 1548–1552, 1988.

    CAS  PubMed  Google Scholar 

  35. Skinner NS and Costin JC. Role of O2 and K+ in abolition of sympathetic vasoconstriction in dog skeletal muscle. Am J Physiol 217: 438–444, 1969.

    CAS  PubMed  Google Scholar 

  36. Strandell T and Shepherd JT. The effect in humans of increased sympathetic activity on the blood flow to active muscles. Acta Med Scand 472: 146–167, 1967.

    CAS  Google Scholar 

  37. Tateishi J and Faber JE. ATP-sensitive K+ channels mediate α2D-adrenergic receptor contraction of arteriolar smooth muscle and reversal of contraction by hypoxia. Circ Res 76: 53–63, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Tateishi J and Faber JE. Inhibition of arteriole α2- but not α1-adrenoceptor constriction by acidosis and hypoxia in vitro. Am J Physiol 268: H2068-H2076, 1995.

    CAS  PubMed  Google Scholar 

  39. Thomas GD, Hansen J, and Victor RG. Inhibition of alpha-2 adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. Am J Physio 266: H920–929, 1994.

    CAS  Google Scholar 

  40. Thomas GD and Victor RG. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. J Physiol 506: 817–826, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tschakovsky ME, Sujirattanawimol K, Ruble SB, Valic Z, and Joyner MJ. Is sympathetic neural vasoconstriction blunted in the vascular bed of exercising human muscle? J Physiol 541: 623–635, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Vanhoutte PM, Verbeuren TJ, and Webb RC. Local modulation of adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 61: 151–247, 1981.

    CAS  PubMed  Google Scholar 

  43. Weisbrod CJ, Minson CT, Joyner MJ, and Halliwill JR. Effects of regional phentolamine on hypoxic vasodilatation in healthy humans. J Physiol 537: 613–621, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Dinenno, F.A. (2003). Hypoxic Regulation of Blood Flow in Humans. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 543. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8997-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8997-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4753-8

  • Online ISBN: 978-1-4419-8997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics