Hypoxia pp 177-189 | Cite as

Cardio-Pulmonary Interactions at High Altitude

Pulmonary hypertension as a common denominator
  • Marco Maggiorini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 543)

Abstract

The purpose of this review is to find the evidence that a disproportionate pulmonary vasoconstriction persisting for days, weeks and years during residence at high altitude is the common pathophysiologic mechanism of high altitude pulmonary edema (HAPE), subacute mountain sickness and chronic mountain sickness. A recent finding in early HAPE suggests that transmission of excessively elevated pulmonary artery pressure to the pulmonary capillaries leading to alveolar hemorrhage as the pathophysiologic mechanism of HAPE. The elevated incidence of HAPE in Indian soldiers led the Indian Army to extend the acclimatization period from a few days to 5 weeks. Using this protocol, HAPE was prevented, but after several weeks of residence at an altitude of 6000m dyspnea, anasarca and pleuro-pericardial effusion developed. Clinical examination revealed severe congestive right heart failure. This condition has been previously described in long-term high altitude residents of the Himalaya and the Andes. In rats, smooth muscle cells appear in normally non-muscular arterioles within days of simulated altitude. Rapid remodeling of the small precapillary arteries may prevent HAPE but increase pulmonary vascular resistance leading to pulmonary hypertension in long-term high altitude residents. Symptoms and signs of HAPE, subacute mountain sickness and chronic mountain sickness reverse completely after residents are transfered to low altitude. In conclusion, these findings strongly suggest that pulmonary hypertension at high altitude, which could be named “high altitude pulmonary hypertension”, is the principal and common pathogenic factor of all three cardio-pulmonary manifestations of high altitude illness. Accordingly, subacute mountain sickness and chronic mountain sickness could be renamed in “acute-” and “chronic right heart failure of high altitude”, respectively.

Key Words

high altitude pulmonary hypertension high altitude pulmonary edema subacute mountain sickness chronic mountain sickness Monge disease right heart failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand, I. S., R. M. Malhotra, Y. Chandrashekhar, H. K. Bali, S. S. Chauhan, S. K. Jindal, R. K. Bhandari and P. L. Wahi. Adult subacute mountain sickness - a syndrome of congestive heart filure in man at very high altitude. Lancet 335: 561–565, 1990.PubMedCrossRefGoogle Scholar
  2. 2.
    Antezana, G., G. Leguia and A. Guzman. Hemodynamic study of high altitude pulmonary edema (12’000 ft). In: New York, Edited by W. Brendel and R. Zink. High altitude physiology and medicine: Springer Verlag, 232–41, 1982.CrossRefGoogle Scholar
  3. 3.
    Arias-Stella, J. and M. Saldaña. The terminal portion of the pulmonary arterial tree in people native to high altitude. Circulation 28: 915–925., 1963.PubMedCrossRefGoogle Scholar
  4. 4.
    Audi, S. H., C. A. Dawson, D. A. Rickaby and J. H. Linehan. Localization of the sites of pulmonary vasomotion by use of arterial and venous occlusion. J Appl Physiol 70: 2126–36., 1991.PubMedGoogle Scholar
  5. 5.
    Bärtsch, P., M. Maggiorini, M. Ritter, C. Noti, P. Vock and O. Oelz. Prevention of high altitude pulmonary edema by nifedipine. N EnglJ Med 325: 1284–1289, 1991.CrossRefGoogle Scholar
  6. 6.
    Fagan, K. A. and J. V. Weil. Potential genetic contributions to control of the pulmonary circulation and ventilation at high altitude. High Alt Med Biol 2: 165–71., 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    Gamboa, R. and E. Marticorena. Pulmonary arterial pressure in newborn infants in high altitude. Arch Inst Biol Andina 4: 55–66., 1971.PubMedGoogle Scholar
  8. 8.
    Gamboa, R. and E. Marticorena. The ductus arteriosus in the newborn infant at high altitude. Vasa 1: 192–5., 1972.PubMedGoogle Scholar
  9. 9.
    Ge, R. L. and G. Helun. Current concept of chronic mountain sickness: pulmonary hypertension-related high-altitude heart disease. Wilderness Environ Med 12: 190–4., 2001.PubMedCrossRefGoogle Scholar
  10. 10.
    Groves, B. M., T. Droma, J. R. Sutton, R. G. McCullough, R. E. McCullough, J. Zhuang, G. Rapmund, S. Sun, C. Janes and L. G. Moore. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol 74: 312–8., 1993.PubMedGoogle Scholar
  11. 11.
    Groves, B. M., J. T. Reeves, J. R. Sutton, P. D. Wagner, A. Cymeran, M. K. Malconian, P. B. Rock, P. M. Young and C. S. Houston. Operation Everest II: elevated high altitude pulmonary resistence unresponsive to oxygen. J. Appl. Physiol 63: 521–530, 1987.PubMedGoogle Scholar
  12. 12.
    Hackett, P. H., R. C. Roach, G. S. Hartig, E. R. Greene and B. D. Levine. The effect of vasodilators on pulmonary hemodynamics in high altitude pulmonary edema: A comparison. Int J Sports Med 13 (Suppl 1): S68–S71, 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    Hakim, T. S. and S. Kelly. Occlusion pressures vs. micropipette pressures in the pulmonary circulation. J Appl Physiol 67: 1277–1285, 1989.PubMedGoogle Scholar
  14. 14.
    Hakim, T. S., R. P. Michel, H. Minami and H. K. Chang. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J Appl Physiol 54: 1298–1302, 1983.PubMedGoogle Scholar
  15. 15.
    Hecht, H. H., H. Kuida, R. L. Lange, J. L. Thorne, A. M. Brown, R. Carsilsle, A. Ruby and F. Ukradyha. Brisket disease. Am. J. Med. 32: 171–183, 1962.PubMedCrossRefGoogle Scholar
  16. 16.
    Hultgren, H. Chronic Mountain Sickness. In: San Francisco (CA), Edited by H. Hultgren. High Altitude Medicine: Hultgren Publication, 348–67, 1997.Google Scholar
  17. 17.
    Hultgren, H. N., R. F. Grover and L. H. Hartley. Abnormal circulatory responses to high altitude in subjects with a previous history of high-altitude pulmonary edema. Circulation 44: 759– 770, 1971.PubMedCrossRefGoogle Scholar
  18. 18.
    Hultgren, H. N., J. Kelly and H. Miller. Pulmonary circulation in acclimatized mean at high altitude. J Appl Physiol 20: 233–238, 1965.Google Scholar
  19. 19.
    Hultgren, H. N. and E. A. Marticorena. High altitude pulmonary edema. Epidemiologic observations in Peru. Chest 74: 372–6, 1978.PubMedCrossRefGoogle Scholar
  20. 20.
    Hultgren, N. H., C. E. Lopez, E. Lundberg and H. Miller. Physiologic studies of pulmonary edema at high altitude. Circulation 29: 393–408, 1964.PubMedCrossRefGoogle Scholar
  21. 21.
    Kobayashi, T., S. Koyama, K. Kubo, F. M. and S. Kusama. Clinical features of patients with high altitude pulmonary edema in Japan. Chest92: 814–821, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Koitzumi, T., A. Kawashima, K. Kubo, T. Kobayashi and M. Sekiguchi. Radiographic and hemodynamic changes during recovery from high altitude pulmonary edema. Intern Med 33: 525–528, 1994.CrossRefGoogle Scholar
  23. 23.
    Kronenberg, R. G., P. Safar, F. Wright, W. Noble, E. Wahrenbrock, R. Hickey, E. Nemoto and J. W. Severinghaus. Pulmonary artery pressure and alveolar gas exchange in men during acclimatization to 12,470 ft. J Clin Invest 50: 827–837, 1971.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lizzarraga, L. Soroche Agudo: Edema agudo del pulmon. Anales de la Facultad de Medicina Universitad national Mayor de San Marcos de Lima 38: 244–274, 1955.Google Scholar
  25. 25.
    Maggiorini, M., C. Mélot, S. Pierre, F. Pfeiffer, I. Greve, C. Sartori, M. Lepori, M. Hauser, U. Scherrer and R. Naeije. High altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103: 2078–83, 2001.PubMedCrossRefGoogle Scholar
  26. 26.
    Mitzner, W. and J. T. Sylvester. Hypoxic vasoconstriction and fluid filtration in pig lungs. J Appl Physiol 51:1065–1071,1981.PubMedGoogle Scholar
  27. 27.
    Monge, C. La enfermedad de los Andes (sindromes eritremicos). Anal Facult Med Lima 11: 309–14, 1928.Google Scholar
  28. 28.
    Monge, C. High altitude disease. Arch Int Med 59: 32–40, 1937.CrossRefGoogle Scholar
  29. 29.
    Monge, C. C, A. Arregui and F. Leon-Velarde. Pathophysiology and epidemiology of chronic mountain sickness. Int J Sports Med 13 Suppl 1: S79–81, 1992.CrossRefGoogle Scholar
  30. 30.
    Monge, M. and C. Monge. Historical confirmation. In: Springfield, IL, Edited by C. C. Thomas. High altitude disease: Mechanism and management: 1966.Google Scholar
  31. 31.
    Moore, L. G., S. Niermeyer and S. Zamudio. Human adaptation to high altitude: regional and life-cycle perspectives. Am J Phys Anthropol Suppl 27: 25–64, 1998.PubMedCrossRefGoogle Scholar
  32. 32.
    Nath, C., S. Kashyap and A. Subramaniam. Chronic mountain sickness-probrang type. Defence Scz J 34: 443–50, 1984.Google Scholar
  33. 33.
    Oelz, O., M. Maggiorini, M. Ritter, U. Waber, R. Jenni, P. Vock and P. Bärtsch. Nifedipine for high altitude pulmonary oedema. Lancet 2(8674): 1241–1244, 1989.PubMedCrossRefGoogle Scholar
  34. 34.
    Pei, S. X., X. J. Chen, B. Z. Si Ren, Y. H. Liu, X. S. Cheng, E. M. Harris, I. S. Anand and P. C. Harris. Chronic mountain sickness in Tibet. Q J Med 71: 555–74, 1989.PubMedGoogle Scholar
  35. 35.
    Penaloza, D. and F. Sime. Circulatory dynamics during high altitude pulmonary edema. Am J Cardiol 23: 1969.Google Scholar
  36. 36.
    Rabinovitch, M., W. Gamble, O. Miettinen and L. Reid. Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol 240: H62–H72, 1981.PubMedGoogle Scholar
  37. 37.
    Rabinovitch, M., M. A. Konstam, W. J. Gamble, N. Papanicolaou, M. J. Aronovitz, S. Treves and L. Reid. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ Res 52: 432–41, 1983.PubMedCrossRefGoogle Scholar
  38. 38.
    Raj, J. U. and P. Chen. Micropuncture measurement of microvascular pressures in isolated lamb lungs during hypoxia. Circ Res 59: 398–404, 1986.PubMedCrossRefGoogle Scholar
  39. 39.
    Roy, B. S., J. S. Guleria, P. K. Khanna, S. C. Manchanda, J. N. Pande and P. S. Subba. Haemodynamic studies in high altitude pulmonary edema. Brit Heart J 31: 52–58, 1969.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Sartori, C, Y. Allemann, H. Duplain, M. Lepori, M. Egli, E. Lipp, D. Hutter, P. Turini, O. Hugh, S. Cook, P. Nicod and U. Scherrer. Salmeterol for the prevention of high-altitude pulmonary edema. N EnzlJ Med 346: 1631–6, 2002.CrossRefGoogle Scholar
  41. 41.
    Schoene, R. B., E. R. Swenson and H. N. Hultgren. High altitude pulmonary edema. In: New York, Edited by T. F. Hornbein and R. B. Schoene. High altitude - an exploration of human adaptation. : Marcel Dekker Inc., 161, 2001.Google Scholar
  42. 42.
    Sime, F., N. Banchero, D. Penaloza, R. Gamboa, J. Cruz and E. Marticorena. Pulmonary hyper- tension in children born and living at high altitudes. Amer J Cardiol 11: 143–49, 1963.PubMedCrossRefGoogle Scholar
  43. 43.
    Singh, I., C. C. Kapila, P. K. Khanna, R. B. Nanda and B. D. P. Rao. High altitude pulmonary edema. Lancet 1 (7379): 229–234, 1965.PubMedCrossRefGoogle Scholar
  44. 44.
    Sobin, S. S., H. M. Tremer, J. D. Hardy and H. P. Chiodi. Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat. J Appl Physiol 55: 1445–55, 1983.PubMedGoogle Scholar
  45. 45.
    Sui, G. J., Y. H. Liu, X. S. Cheng, I. S. Anand, E. Harris, P. Harris and D. Heath. Subacute in-fantile mountain sickness. J Pathol 155: 161–170, 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Swenson, S., M. Maggiorini, S. Mongovin, S. Gibbs, I. Greve, H. Maierbaurl and P. Bärtsch. High altitude pulmonary edema is a non-inflammatory high permeability leak of the alveolarcapillary barrier. JAMA 287: 2226–2235, 2002.CrossRefGoogle Scholar
  47. 47.
    Tufts, D. A., J. D. Haas, J. L. Beard and H. Spielvogel. Distribution of hemoglobin and tunc tional consequences of anemia in adult males at high altitude. Am J Clin Nutr 42: 1–11 1985.PubMedGoogle Scholar
  48. 48.
    Vogel, J., W. Weaver, R. Rose, S. Blount and R. Grover. Pulmonary hypetension on exertion in normal man living at 10,150 feet (Leadville Colorado). Medicina Thoracalis 19: 461–77, 1962.PubMedGoogle Scholar
  49. 49.
    Vogel, J. H. K., G. E. Goss, M. Mori and H. L. Brammell. Pulmonary circulation in normal man with acute exposure to high altitude (14. 260 feet). Circulation 43 (suool III): III–233. 1966.Google Scholar
  50. 50.
    Whayne, T. F., Jr. and J. W. Severinghaus. Experimental hypoxic pulmonary edema in the rat. J Appl Physiol 25: 729–32, 1968.PubMedGoogle Scholar
  51. 51.
    Winslow, R. and C. Monge. Hypoxia, polycythemia, and chronic mountain sickness. Baltimore: Md: Johns Hopkin’s University Press, 1987, p.Google Scholar
  52. 52.
    Zhao, Y., C. S. Packer and R. A. Rhoades. Pulmonary vein contracts in response to hypoxia. Am J Physiol 265: L87–92, 1993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Marco Maggiorini

There are no affiliations available

Personalised recommendations