Advertisement

Developmental Genetics of the External Genitalia

  • Martin J. Cohn
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 545)

Abstract

The incidence of congenital malformation of the urogenital system is second only to that of the cardiovascular system, yet comparatively little is known about the cellular and molecular mechanisms that regulate urogenital organogenesis. In this chapter, I review recent advances in the developmental biology of the external genitalia, and discuss the implications of this work for our understanding of hypospadias. The majority of research into external genital development and hypospadias has focused on the endocrine system, particularly on the role of androgens (see accompanying chapters in this volume). A relatively unexplored area of genital morphogenesis is the early, genetically controlled process of pattern formation, when genital tubercle outgrowth and three-dimensional patterning occurs (Figure 1). These processes occur in the absence of endocrine signals, and identification of the molecular mechanisms of early genital development is crucial to our understanding of congenital anomalies.

Keywords

External Genitalia Apical Ectodermal Ridge Urethral Plate Androgen Signaling Genital Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altabef, M. and Tickle, C., 2002, Initiation of dorso-ventral axis during chick limb development.Mech Dey 11619–27CrossRefGoogle Scholar
  2. Cohn, M. J., Izpisúa-Belmonte, J. C., Abud, H., Heath, J. K. and Tickle, C., 1995, Fibroblast growth factors induce additional limb development from the flank of chick embryos.Cell 80739–46PubMedCrossRefGoogle Scholar
  3. Cohn, M. J., Patel, K., Krumlauf, R., Wilkinson, D. G., Clarke, J. D. and Tickle, C., 1997Hox9genes and vertebrate limb specification.Nature 38797–101PubMedCrossRefGoogle Scholar
  4. Crossley, P. H., Minowada, G., MacArthur, C. A. and Martin, G. R., 1996, Roles for FGF8 in the induction, initiation, and maintenance of chick limb development.Cell 84127–36.PubMedCrossRefGoogle Scholar
  5. Do116, P., Dierich, A., LeMeur, M., Schimmang, T., Schuhbaur, B., Chambon, P. and Duboule, D., 1993, Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs.Cell75, 431–41.CrossRefGoogle Scholar
  6. Goodman, F. R., Bacchelli, C., Brady, A. F., Brueton, L. A., Fryns, J. P., Mortlock, D. P., Innis, J. W., Holmes, L. B., Donnenfeld, A. E., Feingold, M. et al., 2000, Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome.Am J Hum Genet 67197–202.PubMedCrossRefGoogle Scholar
  7. Haraguchi, R., Mo, R., Hui, C., Motoyama, J., Makino, S., Shiroishi, T., Gaffield, W. and Yamada, G., 2001, Unique functions of Sonic hedgehog signaling during external genitalia development.Development 1284241–50.PubMedGoogle Scholar
  8. Haraguchi, R., Suzuki, K., Murakami, R., Sakai, M., Kamikawa, M., Kengaku, M., Sekine, K., Kawano, H., Kato, S., Ueno, N. et al., 2000, Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation.Development127, 2471–9.PubMedGoogle Scholar
  9. Kmita, M., Fraudeau, N., Herault, Y. and Duboule, D., 2002, Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs.Nature 420145–50PubMedCrossRefGoogle Scholar
  10. Kondo, T., Zakany, J., Innis, J. W. and Duboule, D., 1997, Of fingers, toes and penises.Nature 39029PubMedCrossRefGoogle Scholar
  11. Kurzrock, E. A., Baskin, L. S., Li, Y. and Cunha, G. R., 1999, Epithelial-mesenchymal interactions in development of the mouse fetal genital tubercle.Cells Tissues Organs 164125–30.PubMedCrossRefGoogle Scholar
  12. Li, C., Xiao, J., Hormi, K., Borok, Z. and Minoo, P., 2002, Wnt5a participates in distal lung morphogenesis.Dev Biol 24868–81PubMedCrossRefGoogle Scholar
  13. Min, H., Danilenko, D. M., Scully, S. A., Bolon, B., Ring, B. D., Tarpley, J. E., DeRose, M. and Simonet, W. S., 1998,. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless.Genes Dev 123156–3161PubMedCrossRefGoogle Scholar
  14. Murakami, R. and Mizuno, T., 1986, Proximal-distal sequence of development of the skeletal tissues in the penis of rat and the inductive effect of epithelium.J Embryol Exp Morphol 92133–43PubMedGoogle Scholar
  15. Niswander, L., Tickle, C., Vogel, A., Booth, I. and Martin, G. R. 1993. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb.Cell 75579–87PubMedCrossRefGoogle Scholar
  16. Perriton, C. L., Fowles, N., Chiang, C., Maconochie, M. K. and Cohn, M. J., 2002, Sonic hedgehog signaling from the urethral epithelium controls external genital development.Dev Biol 24726–46PubMedCrossRefGoogle Scholar
  17. Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., Yagishita, N., Matsui, D., Koga, Y., Itoh, N. et al., 1999, FgflO is essential for limb and lung formation.Nat Genet 21138–41PubMedCrossRefGoogle Scholar
  18. Riddle, R. D., Johnson, R. L., Laufer, E., Tabin, C., 1993, Sonic hedgehog mediates the polarizing activity of the ZPA.Cell 751401–16PubMedCrossRefGoogle Scholar
  19. Summerbell, D., 1974, A quantitative analysis of the effect of excision of the AER from the chick limb-budJ Embryol Exp Morphol. 32651–660PubMedGoogle Scholar
  20. Thomson, A. A., 2001, Role of androgens and fibroblast growth factors in prostatic development.Reproduction121,187–195PubMedCrossRefGoogle Scholar
  21. Thomson, A. A. and Cunha, G. R, 1999, Prostatic growth and development are regulated by FGF10Development 1263693–3701PubMedGoogle Scholar
  22. Tickle, C., 2002, The early history of the polarizing region: from classical embryology to molecular biology.Int J Dev Bio1 46:847–52PubMedGoogle Scholar
  23. van der Hoeven, F., Zákány, J. and Duboule, D., 1996, Gene transpositions in the HoxD complex reveal a hierarchy of regulatory controls.Cell 851025–35PubMedCrossRefGoogle Scholar
  24. Warot, X., Fromental-Ramain, C., Fraulob, V., Chambon, P. and Doll¨¦, P., 1997, Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts.Development124, 4781–91.PubMedGoogle Scholar
  25. Yamaguchi, T. P., Bradley, A., McMahon, A. P. and Jones, S., 1999, A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo.Development126,1211–23.PubMedGoogle Scholar
  26. Zákany, J., Fromental-Ramain, C., Warot, X. and Duboule, D., 1997, Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications.Proc Natl Acad Sci USA 9413695–700PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Martin J. Cohn
    • 1
  1. 1.Department of ZoologyUniversity of FloridaGainesville

Personalised recommendations