Dynamics of Bacterial Carriage and Disease: Lessons from the Meningococcus

  • Martin C. J. Maiden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 549)


Many bacteria responsible for human diseases are not pathogens in the strictest sense; rather they are commensal organisms which cause disease as a consequence of a failed or dysfunctional interaction with their host. For the pediatrician Neisseria meningitidis, the meningococcus, is perhaps the most dramatic example of such an organism. Indeed, the designation of the meningococcus as a commensal may appear to be strange or even ridiculous from a clinical perspective. Meningococcal disease, comprising the two syndromes meningitis and septicemia, is one of the most dangerous conditions that a pediatrician is likely to encounter (Brandtzaeg, 1995). Its dramatic symptoms, together with the rapidity with which it progresses, contribute to the reputation of the meningococcus as a more than usually aggressive pathogen. However, meningococcal disease is very rare relative to the universal presence of asymptomatic meningococcal carriage in human populations (Broome, 1986).


Meningococcal Disease Neisseria Meningitidis Herd Immunity Clonal Complex Polysaccharide Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artenstein, M.S., Gold, R., Zimmerly, J.G., Wyle, F.A., Schneider, H., and Harkins, C. (1970). Prevention of meningococcal disease by group C polysaccharide vaccine. N. Engl. J. Med. 282, 417–420.PubMedCrossRefGoogle Scholar
  2. Balmer, P., Borrow, R., and Miller, E. (2002). Impact of meningococcal C vaccine in the UK. J. Med. Microbiol. 51, 717–722.PubMedGoogle Scholar
  3. Brandtzaeg, P. (1995). Pathogenesis of Meningococcal Infections. In K.A.V. Cartwright (ed.) Meningococcal disease. John Wiley and Sons, Chichester, pp. 71–114.Google Scholar
  4. Broome, C.V. (1986). The carrier state: Neisseria meningitidis. J. Antimicrob. Chemother. 18(Suppl A), 25–34.PubMedGoogle Scholar
  5. Brundage, J.F. and Zollinger, W.D. (1987). Evolution of meningococcal disease epidemiology in the US army. In N. A. Vedros (ed.) Evolution of meningococcal disease, Vol. I. CRC Press, Boca Raton, FL, pp. 5–25.Google Scholar
  6. Cartwright, K.A.V., Stuart, J.M., Jones, D.M., and Noah, N.D. (1987). The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol. Infect. 99, 591–601.PubMedCrossRefGoogle Scholar
  7. Caugant, D.A. (1998). Population genetics and molecular epidemiology of Neisseria meningitidis. Apmis 106, 505–525.PubMedCrossRefGoogle Scholar
  8. Caugant, D.A., Bovre, K., Gaustad, P., Bryn, K., Holten, E., H0iby, E.A., and Fr0holm, L.O. (1986a). Multilocus genotype determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J. Gen. Microbiol. 132, 641–652.PubMedGoogle Scholar
  9. Caugant, D.A., Frøholm, L.O., Bovre, K., Holten, E., Frasch, C.E., Mocca, L.F. et al. (1986b). Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc. Natl. Acad. Sci. USA 83, 4927–4931.PubMedCrossRefGoogle Scholar
  10. Caugant, D.A., Kristiansen, B.E., Frøholm, L.O., Bovre, K., and Seiander, R.K. (1988). Clonal diversity of Neisseria meningitidis from a population of asymptomatic carriers. Infect. Immun. 56, 2060–2068.PubMedGoogle Scholar
  11. Claus, H., Maiden, M.C., Maag, R., Frosch, M., and Vogel, U. (2002). Many carried meningococci lack the genes required for capsule synthesis and transport. Microbiology 148, 1813–1819.PubMedGoogle Scholar
  12. Dolan-Livengood, J.M., Miller, Y.K., Martin, L.E., Urwin, R., and Stephens, D.S. (2003). Genetic basis for non-groupable Neisseria meningitidis. J. Infect. Dis. 187, 1616–1628.PubMedCrossRefGoogle Scholar
  13. Finne, J., Leinonen, M., and Makela, P.H. (1983). Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 2, 355–357.PubMedCrossRefGoogle Scholar
  14. Frasch, C.E., Tsai, C.-M., and Mocca, L.F. (1986). Outer Membrane Proteins of Neisseria meningitidis: Structure and importance in Meningococcal Disease. Clin. Invest. Med. 9, 101–107.PubMedGoogle Scholar
  15. Gold, R., Goldschneider, I., Lepow, M.L., Draper, T.F., and Randolph, M. (1978). Carriage of Neisseria meningitides and Neisseria lactamica in infants and children. J. Infect. Dis. 137, 112–121.PubMedCrossRefGoogle Scholar
  16. Gotschlich, E.C., Goldschneider, I., and Artenstein, M.S. (1969). Human immunity ot the meningococcus IV. Immunogenicity of group A and group C meningococcal polysaccharides. J. Exp. Med. 129, 1367–1384.PubMedCrossRefGoogle Scholar
  17. Jennings, H.J. and Lugowski, C. (1981). Immunochemistry of groups A, B, and C meningoccal polysaccharide-tetanus toxoid conjugates. J. Immunol. 127, 1011–1018.PubMedGoogle Scholar
  18. Jodar, L., Feavers, I.M., Salisbury, D., and Granoff, D.M. (2002). Development of vaccines against meningococcal disease. Lancet 359, 1499–1508.PubMedCrossRefGoogle Scholar
  19. Jones, D.M. and Mallard, R.H. (1993). Age incidence of meningococcal infection England and Wales 1984-1991. J Infect. 27, 83–88.PubMedCrossRefGoogle Scholar
  20. Maiden, M.C. and Stuart, J.M. (2002). Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet 359, 1829–1831.PubMedCrossRefGoogle Scholar
  21. Maiden, M.C.J., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Urwin, R. et al. (1998). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95, 3140–3145.PubMedCrossRefGoogle Scholar
  22. Maiden, M.C.J., and Spratt, B.G. (1999). Meningococcal conjugate vaccines: new opportunities and new challenges. Lancet 354, 615–616.PubMedCrossRefGoogle Scholar
  23. Miller, E., Salisbury, D., and Ramsay, M. (2001). Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20(Suppl 1), S58–67.PubMedCrossRefGoogle Scholar
  24. Peltola, H. (1983). Meningococcal disease: still with us. Rev. Infect. Dis. 5, 71–91.PubMedCrossRefGoogle Scholar
  25. Popovic, T., Sacchi, C.T., Reeves, M.W., Whitney, A.M., Mayer, L.W., Noble, C.A. et al. (2000). Neisseria meningitidis serogroup W135 isolates associated with the ET-37 complex. Emerg. Infect. Dis. 6, 428–429.PubMedCrossRefGoogle Scholar
  26. Ramsay, M.E., Andrews, N., Kaczmarski, E.B., and Miller, E. (2001). Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357, 195–196.PubMedCrossRefGoogle Scholar
  27. Stuart, J.M., Cartwright, K.A., Robinson, P.M., and Noah, N.D. (1989) Effect of smoking on meningoccal carriage. Lancet 2, 723–725.PubMedCrossRefGoogle Scholar
  28. Tsai, C.M., Mocca, L.F., and Frasch, C.E. (1987). Immunotype epitopes of Neisseria meningitidis lipooligosaccharide types 1 through 8. Infect. Immun. 55, 1652–1656.PubMedGoogle Scholar
  29. Vedros, N.A. (1987). Development of meningococcal serogroups. In N.A. Vedros (ed.) Evolution of meningococcal disease, Vol. II. CRC Press Inc., Boca Raton, FL, pp. 33–37.Google Scholar
  30. Wang, J.-F., Caugant, D.A., Morelli, G., Koumare, B., and Achtman, M. (1993). Antigenic and epidemiological properties of the ET-37 complex of Neisseria meningitis. J. Infect. Dis. 167, 1320–1329.PubMedCrossRefGoogle Scholar

Copyright information

© Science+Business Media New York 2004

Authors and Affiliations

  • Martin C. J. Maiden

There are no affiliations available

Personalised recommendations