The Last of the Meningococcus?

  • Shelley Segal
  • Andrew J. Pollard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 549)


Globally, infectious diseases account for 63% of deaths in children under the age of 4 years, with acute respiratory infection (ARI), diarrhea, measles, malaria, and HIV infection accounting for the greatest proportions of deaths (World Health Organisation, 2000). ARI, for example, is believed to result in 2 million deaths in the under-5 age group and over 3.5 million deaths annually overall. By contrast, the burden of meningococcal infection and mortality is far lower, with only 500,000 cases and about 50,000 deaths per year (Tikhomirov et al., 1997).


Outer Membrane Protein Conjugate Vaccine Acute Respiratory Infection Meningococcal Disease Neisseria Meningitidis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Hadi, H., Wooldridge, K., Robinson, K., and Ala’Aldeen, D.A. (2000). Investigation of the potential of App as a vaccine candidate. In P. Rice, F. Sparling, and W. Shafer (eds.), Twelfth International Neisseria Conference, HCC Inc, Galveston, Texas.Google Scholar
  2. Ala’Aldeen, D.A., Davies, H.A., and Bordello, S.P. (1994). Vaccine potential of meningococcal FrpB: studies on surface exposure and functional attributes of common epitopes. Vaccine 12, 535–541.CrossRefGoogle Scholar
  3. Arumugham, R., Fortuna-Nevin, M., Mountzouros, K., Secor, S., Sharma, M., Gibson, B. et al. (1998). Development of Lipooligosaccharide—Protein conjugate vaccines against Group B Neisseria meningitidis. In The Fifth Conference of the International Endotoxin Society, Santa Fe, p. 52.Google Scholar
  4. Booy, R., Habibi, P., Nadel, S., de Munter, C., Britto, J., Morrison, A. et al. (2001). Reduction in case fatality rate from meningococcal disease associated with improved healthcare delivery. Arch. Dis. Child. 85, 386–390.PubMedCrossRefGoogle Scholar
  5. Bredius, R.G., Derkx, B.H., Fijen, C.A., de Wit, T.P., de Haas, M., Weening, R.S. et al. (1994). Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J. Infect. Dis. 170, 848–853.PubMedCrossRefGoogle Scholar
  6. Cadieux, N., Plante, M., Rioux, C.R., Hamel, J., Brodeur, B.R., and Martin, D. (1999). Bactericidal and cross-protective activities of a monoclonal antibody directed against Neisseria meningitidis NspA outer membrane protein. Infect. Immun. 67, 4955–4959.PubMedGoogle Scholar
  7. Carson, S.D., Klebba, P.E., Newton, S.M., and Sparling, P.F. (1999). Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J. Bacteriol. 181, 2895–2901.PubMedGoogle Scholar
  8. Centers for Disease Control and Prevention (2000). Serogroup W-135 meningococcal disease among travelers returning from Saudi Arabia-United States. MMWR 49, 345–346.Google Scholar
  9. Christodoulides, M., Brooks, J.L., Rattue, E., and Heckeis, J.E. (1998). Immunization with recombinant class 1 outer-membrane protein from Neisseria meningitidis: influence of liposomes and adjuvants on antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology 144, 3027–3037.PubMedCrossRefGoogle Scholar
  10. Christodoulides, M. and Heckeis, J.E. (1994). Immunization with a multiple antigen peptide containing defined B-and T-cell epitopes: production of bactericidal antibodies against group B Neisseria meningitidis. Microbiology 140, 2951–2960.PubMedCrossRefGoogle Scholar
  11. Claassen, I., Meylis, J., van der Ley, P., Peeters, C., Brons, H., Robert, J. et al. (1996). Production, characterization and control of a Neisseria meningitidis hexavalent class 1 outer membrane protein containing vesicle vaccine. Vaccine 14, 1001–1008.PubMedCrossRefGoogle Scholar
  12. Danielson, L. and Mann, E. (1806). The history of a singular and very mortal disease, which lately made its appearance in Medfield. Med. Agric. Reg. 1, 65.Google Scholar
  13. Danve, B., Lissolo, L., Guinet, F., Boutry, E., Speck, D., Cadoz, M. et al. (1998). Safety and immunogenicity of a Neisseria meningitidisgroup B transferrin binding protein vaccine in adults. In X. Nassif, M.J. Quentin-Millet, and M.-K. Taha (eds.), Eleventh International Pathogenic Neisseria Conference. EDK, Paris, Nice, p. 53.Google Scholar
  14. Danve, B., Lissolo, L., Mignon, M., Dumas, P., Colombani, S., Schryvers, A.B. et al. (1993). Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 11, 1214–1220.PubMedCrossRefGoogle Scholar
  15. Decosas, J. and Koama, J.B. (2002). Chronicle of an outbreak foretold: meningococcal meningitis W135 in Burkina Faso. Lancet Infect. Dis. 2, 763–765.PubMedCrossRefGoogle Scholar
  16. Fijen, C.A., Bredius, R.G., and Kuijper, E.J. (1993). Polymorphism of IgG Fc receptors in meningococcal disease. Ann. Intern. Med. 119, 636.PubMedGoogle Scholar
  17. Fijen, C.A., Bredius, R.G., Kuijper, E.J., Out, T.A., De Haas, M., De Wit, A.P. et al. (2000). The role of Fcgamma receptor polymorphisms and C3 in the immune defence against Neisseria meningitidis in complement-deficient individuals. Clin. Exp. Immunol. 120, 338–345.PubMedCrossRefGoogle Scholar
  18. Fijen, C.A., Kuijper, E.J., te Bulte, M.T., Daha, M.R., and Dankert, J. (1999). Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin. Infect. Dis. 28, 98–105.PubMedCrossRefGoogle Scholar
  19. Fredriksen, J.H., Rosenqvist, E., Wedege, E., Bryn, K., Bjune, G., Frøholm, L.O. et al. (1991). Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann. 14, 67–79; discussion 79-80.PubMedGoogle Scholar
  20. Gomez, J.A., Criado, M.T., and Ferreiros, C.M. (1998). Bactericidal activity of antibodies elicited against the Neisseria meningitidis 37-kDa ferric binding protein (FbpA) with different adjuvants. FEMS Immunol. Med. Microbiol. 20, 79–86.PubMedCrossRefGoogle Scholar
  21. Griffiss, J.M., Brandt, B.L., Broud, D.D., Goroff, D.K., and Baker, C.J. (1984). Immune response of infants and children to disseminated infections with Neisseria meningitidis. J. Infect. Dis. 150, 71–79.PubMedCrossRefGoogle Scholar
  22. Harding, D., Baines, P.B., Brull, D., Vassiliou, V., Ellis, I., Hart, A. et al. (2002). Severity of meningococcal disease in children and the angiotensin-converting enzyme insertion/deletion polymorphism. Am. J. Respir. Crit. Care Med. 165, 1103–1106.PubMedGoogle Scholar
  23. Hausdorff, W.P., Bryant, J., Paradiso, P.R., and Siber, G.R. (2000). Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin. Infect. Dis. 30, 100–121.PubMedCrossRefGoogle Scholar
  24. Hibberd, M.L., Sumiya, M., Summerfield, J.A., Booy, R., and Levin, M. (1999). Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Meningococcal Research Group. Lancet 353, 1049–1053.PubMedCrossRefGoogle Scholar
  25. Johnson, A.S., Gorringe, A.R., Mackinnon, F.G., Fox, A.J., Borrow, R., and Robinson, A. (1999). Analysis of the human Ig isotype response to lactoferrin binding protein A from Neisseria meningitidis. FEMS Immunol. Med. Microbiol. 25, 349–354.PubMedCrossRefGoogle Scholar
  26. Kizil, G., Todd, I., Atta, M., Borriello, S.P., Ait-Tahar, K., and Ala’Aldeen, D.A. (1999). Identification and characterization of TspA, a major CD4(+) T-cell-and B-cell-stimulating Neisseria-specific antigen. Infect. Immun. 67, 3533–3541.PubMedGoogle Scholar
  27. Kondaveeti, S., Hibberd, M.L., Booy, R., Nadel, S., and Levin, M. (1999). Effect of the Factor V Leiden mutation on the severity of meningococcal disease. Pediatr. Infect. Dis. J. 18, 893–896.PubMedCrossRefGoogle Scholar
  28. Lapeyssonnie, L. (1963). La meningite cerebro-spinale en Afrique. Bull WHO 28, 3–114.Google Scholar
  29. MacLennan, J.M., Shackley, F., Heath, P.T., Deeks, J.J., Flamank, C., Herbert, M. et al. (2000). Safety, immunogenicity, and induction of immunologic memory by a serogroup C meningococcal conjugate vaccine in infants: A randomized controlled trial. JAMA 283, 2795–2801.PubMedCrossRefGoogle Scholar
  30. Maiden, M.C. and Stuart, J.M. (2002). Carriage of serogroup C meningococci 1 year after meningococcal C conjugate polysaccharide vaccination. Lancet 359, 1829–1831.PubMedCrossRefGoogle Scholar
  31. Martin, D., Cadieux, N., Hamel, J., and Brodeur, B.R. (1997). Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J. Exp. Med. 185, 1173–1183.PubMedCrossRefGoogle Scholar
  32. Miller, E., Salisbury, D., and Ramsay, M. (2001). Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20(Suppl 1), S58–S67.PubMedCrossRefGoogle Scholar
  33. Morley, S.L. and Pollard, A.J. (2001). Vaccine prevention of meningococcal disease, Vaccine 20, 666–687.PubMedCrossRefGoogle Scholar
  34. Munkley, A., Tinsley, C.R., Virji, M., and Heckeis, J.E. (1991). Blocking of bactericidal killing of Neisseria meningitidis by antibodies directed against class 4 outer membrane protein. Microb. Pathog. 11, 447–452.PubMedCrossRefGoogle Scholar
  35. Nadel, S., Newport, M.J., Booy, R., and Levin, M. (1996). Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J. Infect. Dis. 174, 878–880.PubMedCrossRefGoogle Scholar
  36. Pizza, M., Scarlato, V., Masignani, V., Giuliani, M.M., Arico, B., Comanducci, M. et al. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820.PubMedCrossRefGoogle Scholar
  37. Plested, J.S., Makepeace, K., Jennings, M.P., Gidney, M.A., Lacelle, S., Brisson, J. et al. (1999). Conservation and accessibility of an inner core lipopolysaccharide epitope of Neisseria meningitidis. Infect. Immun. 67, 5417–5426.PubMedGoogle Scholar
  38. Pollard, A.J., Britto, J., Nadel, S., DeMunter, C., Habibi, P., and Levin, M. (1999). Emergency management of meningococcal disease. Arch. Dis. Child. 80, 290–296.PubMedCrossRefGoogle Scholar
  39. Pollard, A.J. and Moxon, E.R. (2002). The meningococcus tamed? Arch. Dis. Child. 87, 13–17.PubMedCrossRefGoogle Scholar
  40. Pollard, A.J. and Scheifele, D. (2001). Meningococcal disease and vaccination in North America. J. Paediatr. Child Health. 37, 20–27.CrossRefGoogle Scholar
  41. Ramsay, M.E., Andrews, N., Kaczmarski, E.B., and Miller, E. (2001). Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357, 195–196.PubMedCrossRefGoogle Scholar
  42. Ramsay, M.E., Andrews, N.J., Trotter, C.L., Kaczmarski, E.B., and Miller, E. (2003). Herd immunity from meningococcal serogroup C conjugate vaccination in England: database analysis. BMJ 326,365–366.PubMedCrossRefGoogle Scholar
  43. Read, R.C., Camp, N.J., di Giovine, F.S., Borrow, R., Kaczmarski, E.B., Chaudhary, A.G. et al. (2000). An inter-leukin-1 genotype is associated with fatal outcome of meningococcal disease. J Infect. Dis. 182, 1557–1560.PubMedCrossRefGoogle Scholar
  44. Read, R.C., Cannings, C., Naylor, S.C., Timms, J.M., Maheswaran, R., Borrow, R. et al. (2003). Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann. Intern. Med. 138, 534–541.PubMedGoogle Scholar
  45. Richmond, P., Borrow, R., Miller, E., Clark, S., Sadler, F., Fox, A. et al. (1999). Meningococcal serogroup C conjugate vaccine is immunogenic in infancy and primes for memory. J. Infect. Dis. 179, 1569–1572.PubMedCrossRefGoogle Scholar
  46. Rokbi, B., Renauld-Mongenie, G., Mignon, M., Danve, B., Poncet, D., Chabanel, C. et al. (2000). Allelic diversity of the two transferrin binding protein B gene isotypes among a collection of Neisseria meningitidis strains representative of serogroup B disease: implication for the composition of a recombinant TbpB-based vaccine. Infect. Immun. 68, 4938–4947.PubMedCrossRefGoogle Scholar
  47. Rosenqvist, E., Tjade, T., Fr0holm, L.O. and Frasch, C.E. (1983). An ELISA study of the antibody response after vaccination with a combined meningococcal group B polysaccharide and serotype 2 outer membrane protein vaccine. NIPH Ann. 6, 139–149.PubMedGoogle Scholar
  48. Rosenstein, N.E., Perkins, B.A., Stephens, D.S., Lefkowitz, L., Cartter, M.L., Danila, R. et al. (1999). The changing epidemiology of meningococcal disease in the United States, 1992-1996. J. Infect. Dis. 180, 1894–1901.PubMedCrossRefGoogle Scholar
  49. Schluter, B., Raufhake, C., Erren, M., Schotte, H., Kipp, F., Rust, S. et al. (2002). Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit. Care Med. 30, 32–37.PubMedCrossRefGoogle Scholar
  50. Stephens, D.S. and McGee, Z.A. (1981). Attachment of Neisseria meningitidis to human mucosal surfaces: influence of pili and type of receptor cell. J. Infect. Dis. 143, 525–532.PubMedCrossRefGoogle Scholar
  51. Stuber, F., Petersen, M., Bokelmann, F., and Schade, U. (1996). A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit. Care Med. 24, 381–384.PubMedCrossRefGoogle Scholar
  52. Tikhomirov, E., Santamaria, M., and Esteves, K. (1997). Meningococcal disease: public health burden and control. World Health Stat. Q. 50, 170–177.PubMedGoogle Scholar
  53. Vieusseaux, G. (1805). Memoire sur le maladie qui a regne a Geneve au printemps de 1805. J. Medecine Chirurgie Pharmacie II, 163–165.Google Scholar
  54. Virji, M., Makepeace, K., Ferguson, D.J., Achtman, M., and Moxon, E.R. (1993). Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol. Microbiol. 10, 499–510.PubMedCrossRefGoogle Scholar
  55. Wang, J.F., Caugant, D.A., Li, X., Hu, X., Poolman, J.T., Crowe, B.A. et al. (1992). Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in the People’s Republic of China. Infect. Immun. 60, 5267–5282.PubMedGoogle Scholar
  56. Weichselbaum, A. (1887). Ueber die aetiologie der akuten meningitis cerebro-spinalis. Fotschr. Med. 5, 573–583, 620-626.Google Scholar
  57. Welch, S.B. and Nadel, S. (2003). Treatment of meningococcal infection. Arch. Dis. Child. 88, 608–614.PubMedCrossRefGoogle Scholar
  58. West, D., Reddin, K., Matheson, M., Heath, R., Funnell, S., Hudson, M. et al. (2001). Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect. Immun. 69, 1561–1567.PubMedCrossRefGoogle Scholar
  59. Westendorp, R.G., Hottenga, J.J., and Slagboom, P.E. (1999). Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet 354, 561–563.PubMedCrossRefGoogle Scholar
  60. Willis, T. (1684). A description of an epidemical feaver in 1661. In T. Dring (ed.), Practice of Physick, Vol. Treatise VIII. London, pp. 46–54.Google Scholar
  61. World Health Organisation. (2000). WHO report on global surveillance of epidemic-prone infectious diseases. Department of Communicable Disease Surveillance and Response,
  62. Zollinger, W.D., Moran, E.E., Devi, S.J., and Frasch, C.E. (1997). Bactericidal antibody responses of juvenile rhesus monkeys immunized with group B Neisseria meningitidis capsular polysaccharide-protein conjugate vaccines. Infect. Immun. 65, 1053–1060.PubMedGoogle Scholar

Copyright information

© Science+Business Media New York 2004

Authors and Affiliations

  • Shelley Segal
  • Andrew J. Pollard

There are no affiliations available

Personalised recommendations