Advertisement

Sepsis Syndrome in Children: Can We Do Better?

  • Marieke Emonts
  • Ronald de Groot
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 549)

Abstract

Sepsis is a significant healthcare problem both in industrialized and developing countries. In the United States the incidence of disease is 56 and 240 per 100,000 per year in children and adults respectively. In adults underlying disease is present in 83%. Approximately 50% of the children have underlying diseases. Annual total costs of sepsis in the United States are estimated at $2 billion in children and $17 billion in adults (Martin et al., 2003; Watson et al., 2003). The major pathogens causing severe sepsis and septic shock are N. meningitidis, S. pneumoniae, Group A α- and β-haemolytic Streptococci, and Staphylococcus aureus. Group B Streptococci play an important role in neonatal sepsis, while Capnocytophaga canimorsus is occasionally reported after dog bites. Before the vaccination era, Haemophilus influenzae was a major cause of sepsis in infants and young children.

Keywords

Septic Shock Severe Sepsis Meningococcal Disease Sepsis Syndrome Purpura Fulminans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aird, W.C. (2003). The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101, 3765–3777.PubMedCrossRefGoogle Scholar
  2. Akira, S. (2001). Toll-like receptors and innate immunity. Adv. Immunol. 78, 1–55.PubMedCrossRefGoogle Scholar
  3. Bernard, G.R., Vincent, J.L., Laterre, P.F., LaRosa, S.P., Dhainaut, J.F., Lopez-Rodriguez, A. et al. (2001). Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709.PubMedCrossRefGoogle Scholar
  4. Bochud, P.Y. and Calandra, T. (2003). Pathogenesis of sepsis: New concepts and implications for future treatment. BMJ. 326, 262–266.PubMedCrossRefGoogle Scholar
  5. Booy, R., Habibi, P., Nadel, S., de Munter, C., Britto, J., Morrison, A., and Levin, M. (2001). Reduction in case fatality rate from meningococcal disease associated with improved healthcare delivery. Arch. Dis. Child. 85, 386–390.PubMedCrossRefGoogle Scholar
  6. Bredius, R.G., Derkx, B.H., Fijen, C.A., de Wit, T.P., de Haas, M., Weening, R.S. et al. (1994). Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J. Infect. Dis. 170, 848–853.PubMedCrossRefGoogle Scholar
  7. Cohen, J. (2001). TREM-1 in sepsis. Lancet 358, 776–778.PubMedCrossRefGoogle Scholar
  8. Cooper, M.S. and Stewart, P.M. (2003). Corticosteroid insufficiency in acutely ill patients. N. Engl. J. Med. 348, 727–734.PubMedCrossRefGoogle Scholar
  9. Dawson, S.J., Wiman, B., Hamsten, A., Green, F., Humphries, S., and Henney, A.M. (1993). The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J. Biol. Chem. 268, 10739–10745.PubMedGoogle Scholar
  10. De Kleijn, E.D., De Groot, R., Hack, C.E., Mulder, P.G., Engl, W., Moritz, B. et al. (2003). Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: A randomized, double-blinded, placebo-controlled, dose-finding study. Crit. Care. Med. 31, 1839–1847.PubMedCrossRefGoogle Scholar
  11. Domingo, P., Muniz-Diaz, E., Baraldes, M.A., Arilla, M., Barquet, N., Pericas, R. et al. (2002). Associations between Fc gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease. Am. J. Med. 112, 19–25.PubMedCrossRefGoogle Scholar
  12. Eriksson, P., Kallin, B., van ’t Hooft, F.M., Bavenholm, P., and Hamsten, A. (1995). Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc. Natl. Acad. Sci. USA. 92, 1851–1855.PubMedCrossRefGoogle Scholar
  13. Faust, S.N., Levin, M., Harrison, O.B., Goldin, R.D., Lockhart, M.S., Kondaveeti, S. et al. (2001). Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N. Engl. J. Med. 345, 408–416.PubMedCrossRefGoogle Scholar
  14. Haralambous, E., Hibberd, M., Ninis, N., Hermans, P., Nadel, E., and Levin, M. (2003a). The role of the functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity and outcome of meningococcal disease in Caucasian children. Crit. Care. Med. 31(12), 2788–2793.PubMedCrossRefGoogle Scholar
  15. Haralambous, E., Weiss, H., Radalowicz, A., Hibberd, M., Booy, R., and Levin, M. (2003b). Sibling familial risk ratio of meningococcal disease in UK Caucasians. Epidemiol. Infect. 130(3), 413–418.PubMedGoogle Scholar
  16. Hazelzet, J.A., Risseeuw-Appel, I.M., Kornelisse, R.F., Hop, W.C., Dekker, I., Joosten, K.F. et al. (1996). Age-related differences in outcome and severity of DIC in children with septic shock and purpura. Thromb. Haemost. 76, 932–938.PubMedGoogle Scholar
  17. Hermans, P.W., Hibberd, M.L., Booy, R., Daramola, O., Hazelzet, J.A., de Groot, R., and Levin, M. (1999). 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 354, 556–560.PubMedCrossRefGoogle Scholar
  18. Hotchkiss, R.S. and Karl, I.E. (2003). The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348, 138–150.PubMedCrossRefGoogle Scholar
  19. Kornelisse, R.F., Hazelzet, J.A., Savelkoul, H.F., Hop, W.C., Suur, M.H., Borsboom, A.N. et al. (1996). The relationship between plasminogen activator inhibitor-1 and proinflammatory and counterinflammatory mediators in children with meningococcal septic shock. J. Infect. Dis. 173, 1148–1156.PubMedCrossRefGoogle Scholar
  20. Levin, M., Quint, P.A., Goldstein, B., Barton, P., Bradley, J.S., Shemie, S.D. et al. (2000). Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: A randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 356, 961–967.PubMedCrossRefGoogle Scholar
  21. Martin, G.S., Mannino, D.M., Eaton, S., and Moss, M. (2003). The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554.PubMedCrossRefGoogle Scholar
  22. Nadel, S., Newport, M.J., Booy, R., and Levin, M. (1996). Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J. Infect. Dis. 174, 878–880.PubMedCrossRefGoogle Scholar
  23. Netea, M.G., Van der Meer, J.W., and Kullberg, B J. (2003). Sepsis—theory and therapies. N. Engl. J. Med. 348, 1600–1602; author reply 1600–1602.PubMedCrossRefGoogle Scholar
  24. Read, R.C., Camp, N.J., di Giovine, F.S., Borrow, R., Kaczmarski, E.B., Chaudhary, A.G. et al. (2000). An interleukin-1 genotype is associated with fatal outcome of meningococcal disease. J. Infect. Dis. 182, 1557–1560.PubMedCrossRefGoogle Scholar
  25. Read, R.C., Cannings, C., Naylor, S.C., Timms, J.M., Maheswaran, R., Borrow, R. et al. (2003). Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann. Intern. Med. 138, 534–541.PubMedGoogle Scholar
  26. Read, R.C., Pullin, J., Gregory, S., Borrow, R., Kaczmarski, E.B., di Giovine, F.S. et al. (2001). A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J. Infect. Dis. 184, 640–642.PubMedCrossRefGoogle Scholar
  27. Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B. et al. (2001). Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377.PubMedCrossRefGoogle Scholar
  28. Smirnova, I., Mann, N., Dols, A., Derkx, H.H., Hibberd, M.L., Levin, M., and Beutler, B. (2003). Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc. Natl. Acad. Sci. USA. 100, 6075–6080.PubMedCrossRefGoogle Scholar
  29. Terry, C.F., Loukaci, V., and Green, F.R. (2000). Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biol. Chem. 275, 18138–18144.PubMedCrossRefGoogle Scholar
  30. Underhill, D.M. and Ozinsky, A. (2002). Toll-like receptors: Key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110.PubMedCrossRefGoogle Scholar
  31. van den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M. et al. (2001). Intensive insulin therapy in the critically ill patients. N. Engl. J. Med. 345, 1359–1367.PubMedCrossRefGoogle Scholar
  32. van der Pol, W.L., Huizinga, T.W., Vidarsson, G., van der Linden, M.W., Jansen, M.D., Keijsers, V. et al. (2001). Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J. Infect. Dis. 184, 1548–1555.PubMedCrossRefGoogle Scholar
  33. Watson, R.S., Carcillo, J.A., Linde-Zwirble, W.T., Clermont, G., Lidicker, J., and Angus, D.C. (2003). The epidemiology of severe sepsis in children in the United States. Am. J. Respir. Crit. Care. Med. 167, 695–701.PubMedCrossRefGoogle Scholar
  34. Westendorp, R.G., Hottenga, J.J., and Slagboom, P.E. (1999). Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet 354, 561–563.PubMedCrossRefGoogle Scholar
  35. Westendorp, R.G., Langermans, J.A., Huizinga, T.W., Elouali, A.H., Verweij, C.L., Boomsma, D.I. et al. (1997). Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349, 170–173.PubMedCrossRefGoogle Scholar

Copyright information

© Science+Business Media New York 2004

Authors and Affiliations

  • Marieke Emonts
  • Ronald de Groot

There are no affiliations available

Personalised recommendations