Skip to main content

Rapid Determination of Molecular Parameters of Synthetic Polymers Using Precipitation-Redissolution HPLC and a “Molded” Monolithic Column

  • Chapter
  • 353 Accesses

Abstract

Synthetic polymers present many unique separation challenges because they consist of macromolecules featuring a distribution of structurally different chains that can vary in both chain length and end-groups. Separation of copolymers is even more difficult since, in addition to the previous two variables, they also may differ in ratios of individual repeat units and their sequence distribution. Therefore a variety of methods have been developed for the characterization of molecular parameters of both natural and synthetic polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantow, M. Polymer Fractionation, 1967, New York: Academic Press.

    Google Scholar 

  2. Francuskiewicz, F. Polymer Fractionation, 1994, Berlin: Springer.

    Book  Google Scholar 

  3. Revillon, A. Alternatives to size-exclusion chromatography. J. Liq. Chromarogr. 1994, 17, 2991–3023.

    Article  Google Scholar 

  4. Chubarova, E. V., Nesterov, V.V. Degradation of high-molecular-mass polystyrene during chromatography on porous and nonporous silicate beads — Correlations with solvent quality. Vysokomol. Soed. A 1994, 36, 1373–1378.

    Google Scholar 

  5. Poole, C. F., Poole, S. K. Chromatography Today, 1995, Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  6. Gooding, K.M., Regnier, F. E. HPLC of Biological Molecules, 1990, New York: Marcel Dekker.

    Google Scholar 

  7. Petro, M., Safir, A. L., Nielsen, R. B. Role of high throughput chromatography in combinatorial chemistry of polymeric materials. Polym. Prepr. 1999, 40, 702.

    CAS  Google Scholar 

  8. Radota, B. J. Analyticallsotachophoresis, 1988, Weinheim, Germany: VCH.

    Google Scholar 

  9. Janča, J. Field-Flow Fractionation, 1984, New York: John Wiley.

    Google Scholar 

  10. Stegeman, G., Kraak, J. C., Poppe, H., Tijssen, R. Hydrodynamic chromatography of polymers in packed-columns. J. Chromatogr. A 1993, 657, 283–303.

    Article  CAS  Google Scholar 

  11. Stadalius, M. A., Quarry, M. A., Mourey, T. H., Snyder, L. R. Conventional chromatographic theory versus “critical” solution behavior in the separation of large molecules by gradient elution. J. Chromatogr. 1986, 358, 17–37.

    Article  CAS  Google Scholar 

  12. Larmann, J. P., DeStefano, J. J., Goldberg, A. P., Stout, R. W., Snyder, L. R., Stadalius, M. A. Separation of macromolecules by reversed-phase high-performance liquid-chromatography—Pore-size and surface-area effects for polystyrene samples of varying molecular-weight. J. Chromatogr. 1983, 255, 163–189.

    Article  CAS  Google Scholar 

  13. Quarry, M. A., Stadalius, M. A., Mourey, T. H., Snyder, L. R. General model for the separation of large molecules by gradient elution. Sorption versus precipitation. J. Chromatogr. 1986, 358, 1–16.

    Article  CAS  Google Scholar 

  14. Shalliker, R. A., Kavanagh, P. E., Russel, I. M. Reversed-phase gradient elution behaviour of polystyrenes in a dichloromethane methanol solvent system. J. Chromatogr. 1991, 543, 157–169.

    Article  CAS  Google Scholar 

  15. Kaczmarski, K., Prus, W., Kowalska, T. Adsorption/partition model of liquid chromatography for chemically bonded stationary phases of the aliphatic cyano, reversed-phase C-8 and reversed-phase C-8 types. J. Chromatogr. A 2000, 869, 57–64.

    Article  CAS  Google Scholar 

  16. Glöckner, G. Characterization of co-polymers by means of liquid-chromatography. Pure Appl. Chem. 1983, 55, 1553–1562.

    Article  Google Scholar 

  17. Jandera, P., Holčapek, M., Kolářová, L. Retention mechanism, isocratic and gradient-elution separation and characterization of co-polymers in normal-phase and reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2000, 869, 65–84.

    Article  CAS  Google Scholar 

  18. Pasch, H., Trathnigg, B. HPLC of Polymers, 1998, Berlin: Springer.

    Google Scholar 

  19. Lochmuller, C. H., McGranaghan, M. B. Isocratic elution of high molecular-weight monodisperse polystyrenes. Anal. Chem. 1989, 61, 2449–2455.

    Article  CAS  Google Scholar 

  20. Northrop, D. M., Martire, D. E., Scott, R. P. W. Liquid-chromatographic retention behavior of polystyrene homopolymers on a C4, bimodal pore diameter, reversed-phase column. Anal. Chem. 1992, 64, 16–21.

    Article  CAS  Google Scholar 

  21. Lochmuller, C. H., Jiang, C., Elomaa, M. Retention behavior of poly (methyl methacrylate) and poly(ethylene glycol) in reversed-phase liquid-chromatography. J. Chromatogr. Sci. 1995, 33, p. 561–567.

    Google Scholar 

  22. Armstrong, D. W., Bui, K. H. Nonaqueous reversed-phase liquid chromatographic fractionation of polystyrene. Anal. Chem. 1982, 54, 706–708.

    Article  CAS  Google Scholar 

  23. Lochmuller, C. H., Jiang, C., Liu, Q., Antonucci, V., Elomaa, M. High-performance liquid chromatography of polymers: Retention mechanisms and recent advances. Crit. Rev. Anal. Chem. 1996, 26, 29–59.

    Article  CAS  Google Scholar 

  24. Rissler, K. Separation of polyester oligomers by gradient high-performance liquid chromatography. J. Chromatogr. A 1997, 786, 85–98.

    Article  CAS  Google Scholar 

  25. Klumperman, B., Philipsen, H. J. A. Coupling matters: Gradient polymer elution chromatography as a versatile tool in polymer characterization. LC-GC 1999, 17, 118–130.

    CAS  Google Scholar 

  26. Lochmuller, C. H., Moebus, M. A., Liu, Q., Jiang, C. Temperature effect on retention and separation of poly(ethylene glycol)s in reversed-phase liquid chromatography. J. Chromatogr. Sci. 1996, 34, 69–76.

    Article  CAS  Google Scholar 

  27. Lee, W., Lee, H. C. Chang, T. Y., Kim, S. B. Characterization of poly(methyl methacrylate) by temperature gradient interaction chromatography with on-line light scattering detection. Macromole cules 1998, 31, 344–348.

    Article  CAS  Google Scholar 

  28. Lee, H. C., Chang, T. H., Harville, S., Mays, J. W. Characterization of linear and star polystyrene by temperature-gradient interaction chromatography with a light-scattering detector. Macromolecules 1998, 31, 690–694.

    Article  CAS  Google Scholar 

  29. Lee, W., Lee, H. C., Park, T., Chang, T., Chang, J. Y. Temperature gradient interaction chromatography of low molecular weight polystyrene. Polymer 1999, 40, 7227–7231.

    Article  CAS  Google Scholar 

  30. Glöckner, G. Gradient HPLC of Copolymers and Chromatographic Cross-Fractionation, 1991, Berlin: Springer.

    Book  Google Scholar 

  31. Desreux, V., Spiegels, M. C. Fractionation of polythene by extraction. Bull. Soc. Chim. Belg. 1950, 59, 476–489.

    Article  CAS  Google Scholar 

  32. Glöckner, G., van den Berg, J. H. M. Precipitation and adsorption phenomena in polymer chromatography. J. Chromatogr. 1986, 352, 511–522.

    Article  Google Scholar 

  33. Bullock, J. High-temperature reversed-phase high-performance liquid-chromatographic analysis of a synthetic copolymer on a nonporous support. J. Chromatogr. 1995, 694, 415–423.

    Article  CAS  Google Scholar 

  34. Snyder, L. R., Stadalius, K. A., Quarry, M. A. Gradient elution in reversed-phase HPLC separation of macromolecules. Anal. Chem. 1983, 55, 1412A–1430A.

    CAS  Google Scholar 

  35. Snyder, L. R., Stadalius, M. A. In C. Horváth (Ed.), High-Performance Liquid Chromatography, Advances and Perspectives 1986, New York: Academic Press Vol. 4, pp. 195–218.

    Google Scholar 

  36. Colwell, L. F., Hartwick, R. A. Nonporous silica supports for high-performance liquid-chromatography. J. Liq. Chromatogr. 1987, 10, 2721–2744.

    Article  CAS  Google Scholar 

  37. Lee, D. P. Chromatographic evaluation of large-pore and non-porous polymeric rever sed phases. J. Chromatogr. 1988, 443, 143–153.

    Article  CAS  Google Scholar 

  38. Huber, C. G., Oefner, P. J., Preuss, E., Bonn, G. K. High-resolution liquid-chromatography of DNA fragments on nonporous poly(styrene-divinylbenzene) particles. Nucleic Acid Res. 1993, 21, 1061–1066.

    Article  CAS  Google Scholar 

  39. Petro, M., Svec, E., Fréchet, J. M. J. Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers—Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes. J. Chromatogr. A 1996, 752, 59–66.

    Article  CAS  Google Scholar 

  40. Regnier, F.E. Perfusion chromatography. Nature 1991, 350, 634–635.

    Article  CAS  Google Scholar 

  41. Afeyan, N. B., Gordon, N. F., Maszaroff, I., Varady, L., Yang, S. P., Regnier, F E. Flow-through particles for the high-performance liquid-chromatographic separation of biomolecules—Perfusion chromatography. J. Chromatogr. 1990, 519, 1–29.

    Article  CAS  Google Scholar 

  42. Wang, Q. C., Svec, F., Fréchet, J. M. J. Macroporous polymeric stationary phase rod as continuous separation medium for reversed phase chromatography. Anal. Chem. 1993, 65, 2243–2248.

    Article  CAS  Google Scholar 

  43. Svec, F., Fréchet, J. M. J. “Molded” rods of polymer for preparative separations of biological products. Biotech. Bioeng, 1995, 48, 476–480.

    Article  CAS  Google Scholar 

  44. Svec, F., Fréchet, J. M. J. Modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins. J. Chromatogr. A 1995, 702, 89–95.

    Article  CAS  Google Scholar 

  45. Svec, F., Fréchet, J. M. J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem. 1992, 64, 820–822.

    Article  CAS  Google Scholar 

  46. Svec, F., Fréchet, J. M. J. New designs of macroporous polymers and supports: From separation to biocatalysis. Science 1996, 273, 205–211.

    Article  CAS  Google Scholar 

  47. Peters, E. C., Svec, F., Fréchet, J. M. J. The preparation of large diameter “molded” porous polymer monoliths and the control of pore structure homogeneity. Chem. Mater. 1997, 9, 1898–1902.

    Article  CAS  Google Scholar 

  48. Podgornik, A., Barut, M., Štancar, A., Josic, D., Koloini, T. Construction of large volume monolithic columns. Anal. Chem. 2000, 72, 5693–5699.

    Article  CAS  Google Scholar 

  49. Svec, F., Fréchet, J. M. J. Kinetic control of pore formation in macroporous polymers—Formation of molded porous materials with high-flow characteristics for separations or catalysis. Chem. Mater. 1995, 7, 707–715.

    Article  CAS  Google Scholar 

  50. Svec, F., Fréchet, J. M. J. Temperature, a simple and efficient tool for the control of pore-size distribution in macroporous polymers. Macromolecules 1995, 28, 7580–7582.

    Article  CAS  Google Scholar 

  51. Viklund, C., Svec, F., Fréchet, J. M. J., Irgum, K. Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: Control of porous properties during polymerization. Chem. Mater. 1996, 8, 744–750.

    Article  CAS  Google Scholar 

  52. Viklund, C., Pontén, E., Glad, B., Irgum, K., Horstedt, P., Svec, F. “Molded” macroporous poly(glycidyl methacrylate-co-trimethylolpropane trimethacrylate ) materials with fine controlled porous properties: Preparation of monoliths using photoinitiated polymerization. Chem. Mater. 1997, 9, 463–471.

    Article  CAS  Google Scholar 

  53. Pelzbauer, Z., Lukáš, J., Svec, F., Kálal, J. Morphology of polymeric sorbents based on glycidyl methacrylate copolymers. J. Chromatogr. 1979, 171, 101–107.

    Article  CAS  Google Scholar 

  54. Wang, Q. C., Svec, F., Fréchet, J. M. J. Reversed-phase chromatography of small molecules and peptides on a continuous rod of macroporous poly(styrene-co-divinylbenzene), J. Chromatogr. A 1994, 669, 230–235.

    Article  CAS  Google Scholar 

  55. Jančo, M., Sýkora, D., Svec, F., Fréchet, J. M. J., Schweer, J., Holm, R. Rapid determination of molecular parameters of synthetic polymers by precipitation-redissolution high-performance liquid chromatography using “molded” monolithic column, J. Polym. Sci. A 2000, 38, 2767–2778.

    Article  Google Scholar 

  56. Petro, M., Svec, F., Fréchet, J. M. J. Molded monolithic rod of macroporous poly(styrene-co-divinylbenzene) as a separation medium for HPLC of synthetic polymers: “On-column” precipitation-redissolution chromatography as an alternative to size-exclusion chromatography of styrene oligomers and polymers. Anal. Chem. 1996, 68, 315–321.

    Article  CAS  Google Scholar 

  57. Engelhardt, H., Czok, M., Schultz, R., Schweinheim, E. Sample size and retention values in high-performance liquid chromatography of biological and synthetic polymers. J. Chromatogr. 1988, 458, 79–92.

    Article  CAS  Google Scholar 

  58. Glöckner, G., Engelhardt, H., Wolf, D., Schultz, R. Sample size and retention values in gradient liquid chromatography of synthetic polymers. Chromatographia 1996, 42, 185–190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sýkora, D., Svec, F., Fréchet, J.M.J., Petro, M., Safir, A.L. (2003). Rapid Determination of Molecular Parameters of Synthetic Polymers Using Precipitation-Redissolution HPLC and a “Molded” Monolithic Column. In: Potyrailo, R.A., Amis, E.J. (eds) High-Throughput Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8989-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8989-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4749-1

  • Online ISBN: 978-1-4419-8989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics