Skip to main content

Image Analysis for High-Throughput Materials Science

  • Chapter
High-Throughput Analysis

Abstract

Imaging plays a key role in modern day materials science by providing a high-density format of data representation that can be visually interpreted or processed by the human brain in a fraction of a second. This efficient parallel processing makes imaging naturally amenable to data acquisition and interpretation in high-throughput or combinatorial approaches. To marry imaging and high-throughput methods, four main issues must be addressed: image collection, image processing, image analysis, and informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. Brochard-Wyart, F., Redon, C., Sykes, C. Dewetting of ultrathin liquid-films. C. R. Acad. Sci. Ser. II 1992, 314 (1), 19–24.

    CAS  Google Scholar 

  2. Sharma, A., Reiter, G. Instability of thin polymer films on coated substrates: Rupture, dewetting, and drop formation. J. Colloid Interface Sci. 1996, 178 (2), 383–399.

    Article  CAS  Google Scholar 

  3. Sharma, A., Khanna, R. Pattern formation in unstable thin liquid films under the influence of antagonistic short-and long-range forces. J. Chem. Phys. 1999, 110 (10), 4929–4936.

    Article  CAS  Google Scholar 

  4. Meredith, J. C., et al. Combinatorial materials science for polymer thin-film dewetting. Macromolecules 2000, 33 (26), 9747–9756.

    Article  CAS  Google Scholar 

  5. Wyart, F. B., Martin, P., Redon, C. Liquid-liquid dewetting. Langmuir 1993, 9 (12), 3682–3690.

    Article  CAS  Google Scholar 

  6. Beichl, I., Bernstein, J., Karim, A. (Eds.) Automated image processing tools for high-throughput measurements of polymer coatings; initial report of software to quantify features, NIST Intra-Agency Reports, Vol. 6869, 2001, Gaithersburg; MD: National Institute of Standards and Technology.

    Google Scholar 

  7. Creton, C. In R. W. Cahn, P. Haasen, and E. J. Kramer (Eds.), Materials science and technology: a comprehensive treatment, 1997, Weinheim, Germany: VCH Verlagsgesellschaft, pp. 708–740.

    Google Scholar 

  8. Creton, C. and Papon, E. Guest Editors MRS Bulletin, “Materials science of adhesives: how to bond things together”, Volume 28, No. 6, page 419, June 2003.

    CAS  Google Scholar 

  9. Kaelble, D. H. Theory and analysis of peel adhesion: Adhesive thickness effects. J. Adhes. 1992, 37, 205–214.

    Article  CAS  Google Scholar 

  10. Shull, K. R. et al. Axisymmetric adhesion tests of soft materials. Macromol. Chem. Phys. 1998, 199 (4), 489–511.

    Article  CAS  Google Scholar 

  11. Barquins, M., Maugis, D. Tackiness of elastomers. J. Adhes. 1981, 13, 53–65.

    Article  CAS  Google Scholar 

  12. Johnson, K. L., Kendall, K., Roberts, A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A 1971, 324, 301–313.

    Article  CAS  Google Scholar 

  13. Crosby, A. J., Karim, A., Amis, E. J. Combinatorial investigations of polymer adhesion. Abstr. Pap. Am. Chem. Soc. 2001, 222, 450-POLY.

    Google Scholar 

  14. Crosby, A. J., Karim, A., Amis, E. J. Combinatorial investigations of interfacial failure. J. Polym. Sci. Part B, Poly. 2003, 41, 883–891.

    Article  CAS  Google Scholar 

  15. Geiger, B., et al. Transmembrane extracellular matrix-cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol. 2001, 2 (11), 793–805.

    Article  CAS  Google Scholar 

  16. Flemming, R. G., et al. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 1999, 20 (6), 573–588.

    Article  CAS  Google Scholar 

  17. Balaban, N. Q., et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 2001, 3 (5), 466–472.

    Article  CAS  Google Scholar 

  18. Hoch, H. C., et al. Signaling for growth orientation and cell-differentiation by surface-topography in Uromyces. Science 1987, 235 (4796), 1659–1662.

    Article  CAS  Google Scholar 

  19. Roberson, S. V., et al. Time of flight secondary ion mass spectrometry (ToF-SIMS) for high-throughput characterization of biosurfaces. Appl. Surf. Sci. 2003, 203–204, 855–858.

    Article  Google Scholar 

  20. Roberson, S. V., et al. Multifunctional ToF-SIMS: Combinatorial mapping of gradient energy substrates. Appl. Surf. Sci. 2002, 200, 150–164.

    Article  CAS  Google Scholar 

  21. Qin, D. et al. In A. Manz and H. Becker (Eds.), Microsystem Technology in Chemistry and Life Sciences, Vol. 194, 1998, Berlin: Springer-Verlag, pp. 1–20.

    Chapter  Google Scholar 

  22. Glowacki, J., Trepman, E., Folkman, J. Cell-shape and phenotypic-expression in chondrocytes. Proc. Soc. Exp. Biol. Med. 1983, 172 (1), 93–98.

    CAS  Google Scholar 

  23. Folkman, J., Moscona, A. Role of cell-shape in growth-control. Nature 1978, 273 (5661), 345–349.

    Article  CAS  Google Scholar 

  24. Broutyboye, D., Tucker, R. W., Folkman, J. Transformed and neoplastic phenotype-reversibility during culture by cell-density and cell-shape. Intl. J. Cancer 1980, 26 (4), 501–507.

    Article  CAS  Google Scholar 

  25. Folkman, J., Greenspan, H. P. Influence of geometry on control of cell-growth. Biochim. Biophys. Acta 1975, 417 (3–4), 211–236.

    CAS  Google Scholar 

  26. True, L. D. Morphometric applications in anatomic pathology. Hum. Pathol. 1996, 27 (5), 450–467.

    Article  CAS  Google Scholar 

  27. Alberts, B., et al. Molecular biology of the cell, 3rd ed, 1994, New York: Garland Publishing.

    Google Scholar 

  28. Russ, J. C. The image processing handbook, 2nd ed, 1994, Boca Raton, FL: CRC Press, p. 674.

    Google Scholar 

  29. Smith, T. G., Jr, Lange, G. D., Marks, W. B. Fractal methods and results in cellular morphology— dimensions, lacunarity and multifractals. J. Neurosci. Methods 1996, 69, 123–136.

    Article  Google Scholar 

  30. Clark, P., et al. Topographical control of cell behavior. 2. Multiple grooved substrata. Development 1990, 108 (4), 635–644.

    CAS  Google Scholar 

  31. Elliott, J.T. et al. Thin films of collagen affect smooth muscle cell morphology. Langmuir 2003, 19 (5), 1506–1514.

    Article  CAS  Google Scholar 

  32. Mei, Y., et al. Biocompatibility of sorbitol containing polyesters. I. Synthesis, surface analysis and cell response in vitro. Biomaterials 2002, submitted for publication.

    Google Scholar 

  33. Gershon, D. Microarray technology: An array of opportunities. Nature 2002, 416, 885–891.

    Article  Google Scholar 

  34. Dopazo, J. Microarray data processing and analysis. In S. M. Lin and K. F. Johnson (Eds.), Microarray Data Analysis, 2002, Boston, MA: Kluwer Academic, pp. 43–63.

    Google Scholar 

  35. Dudley, A. M., et al. Measuring absolute expression with microarrays with a calibrated sample and extended signal intensity range. Proc. Natl. Acad. Sci. 2002, 99 (11), 7554–7559.

    Article  CAS  Google Scholar 

  36. Toet, A. (Ed.). Combinatorial optimization and image analysis: a Literature Survey, 1995, CALMA—Combinatorial Algorithms for Military Applications, http://citeseer.nj.nec.com/toet95combinatorial.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karim, A., Sehgal, A., Meredith, J.C., Crosby, A.J., Amis, E.J. (2003). Image Analysis for High-Throughput Materials Science. In: Potyrailo, R.A., Amis, E.J. (eds) High-Throughput Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8989-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8989-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4749-1

  • Online ISBN: 978-1-4419-8989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics