Skip to main content

Scaling Up of Catalysts Discovered from Small-Scale Experiments

  • Chapter
High-Throughput Analysis

Abstract

The chemical industry faces a challenging business climate due to difficult economic conditions in much of the world, strong international competition, and worldwide environmental concern. In addition, innovation in this industry has slowed as catalyst and process technology has matured. The need for a methodology that can increase catalyst innovation while continuing to decrease cycle times has been recognized by the Council for Chemical Research (Catalysis Roadmap, Vision 2020) [1]. In the 1980s, the pharmaceutical industry faced similar circumstances. Downward pressure on drug prices became incompatible with the high cost of drug discovery. Combinatorial chemistry, based on advances in laboratory automation, high-throughput synthesis, and activity screening, allowed the pharmaceutical companies to break the innovation impasse [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Chemical Society, American Institute of Chemical Engineers, Chemical Manufacturers Association, Council for Chemical Research, and Synthetic Organic Chemical Manufacturers Association. Technology Vision 2020: The U.S. Chemical Industry, December 1996.

    Google Scholar 

  2. Fenniri, H. Recent advances at the interface of medicinal and combinatorial chemistry. Views on methodologies for the generation and evaluation of diversity and application to molecular recognition and catalysts. Curr. Med. Chem. 1996, 3, 343.

    CAS  Google Scholar 

  3. Rohrer, S. P., Birzin, E. T., Mosley, R.T., Berk, S. C., Hutchins, S. Ml., Shen, D-M., Xiong, Y., Hayes, E. C., Parmar, R. M., Foor, F., Mitra, S.W., Degrado, S. J., Shu, M., Klopp, J.M., Cai, S.J., Blake, A., Chan, W. W. S., Pasternak, A., Yang, L., Patchett, A. A., Smith, R. G., Chapman, K. T., Shaeffer, J. M. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 1998, 282, 737.

    Article  CAS  Google Scholar 

  4. Mittach, A. Bosch, C., U.S. Patent 993, 144.

    Google Scholar 

  5. Hanak, J. J., Gittleman, J. I., Pellicane J. P., Bozowski, S. The effect of grain size on the superconducting transition temperature of the transition metals. Phys. Lett. 1969, 30A (3), 201.

    Google Scholar 

  6. Hanak, J. J., Bolker, B.T.F. Calculation of composition of dilute cosputtered multicomponent films. J. Appl. Phys. 1973, 44 (11), 5142.

    Article  CAS  Google Scholar 

  7. Gittleman, J. J., Cohen, R.W., Hanak, J. J. Fluctuation rounding of the superconducting transition in the three dimensional regime. Phys. Lett. 1969, 29A (2), 56.

    Google Scholar 

  8. Hanak, J. J. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 1970, 5, 964.

    Article  CAS  Google Scholar 

  9. Hanak, J. J., Yocum, P.N. DC-electroluminescent flat panel display, U.S. Gov. Rep. Announce. 1973, 73 (21), 128.

    Google Scholar 

  10. Hanak, J. J. Electroluminescence in ZnS: Mn x : Cu y rf-sputtered films. J. Appl. Phys. 1974 (Suppl. 2) (1), 809.

    Google Scholar 

  11. Xiang, X.-D., Sun, X., Briceno, G., Lou, Y., Wang, K.-A., Chang, H., Wallace-Freedman, W. G., Chen, S.-W., Schultz, P. G. A combinatorial approach to material discovery. Science 1995, 268, 1738.

    Article  CAS  Google Scholar 

  12. Moates, F. C., Somani, M., Annamalai, J., Richardson, J. T., Luss, D., Willson, R. C. Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts. Ind. Eng. Chem. Res. 1996, 35, 4801.

    Article  CAS  Google Scholar 

  13. Burgess, K., Porte, A. M. Accelarated synthesis and screening of steroselective transition metal complexes. Adv. Catal. Processes 1997, 2, 69.

    Article  CAS  Google Scholar 

  14. Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J. H., Haushalter, R. C., McFarland, E. W., Poojary, D. M., Reaves, C. M., Weinberg, W. H., Wu, X. D. A rare-earth phosphor containing one-dimensional chairs through combinatorial methods. Science 1998, 279, 837.

    Article  CAS  Google Scholar 

  15. Hideomi, K., Nobuyoki, M. Combinatorial chemistry of inorganic materials. J.Chem (Jpn) 1998, 4, 70.

    Google Scholar 

  16. Reddington, E., Sapeena, A., Gurau, B., Viswanthan, R., Sarongapani, S., Smotkin, E. S., Mallouk, T. E. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735.

    Article  CAS  Google Scholar 

  17. Hoffman, C., Wolf, A., Schuth, F. Parallel synthesis and testing of catalysts under nearly conventional testing conditions. Angew. Chem. Int. Ed. 1999, 38 (18), 2800.

    Article  Google Scholar 

  18. Klein, J., Lehmann, C. W., Schmidt, H-W., Maier, W. F. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed. 1998, 38 (24), 3369.

    Article  Google Scholar 

  19. Orschel, M., Klein, J., Schmidt, H-W., Maier, W. F. Detection of reaction selectivity on catalyst libraries by spatially resolved mass spectrometry. Angew. Chem. Int. Ed. 1999, 38 (18), 2791

    Article  CAS  Google Scholar 

  20. Akporiaye, D. E., Dahl, I. M., Karlsson, A., Wendelbo, R. Combinatorial approach to the hydrothermal synthesis of zeolites. Angew. Chem. Int. Ed. 1998, 37 (5), 609–611

    Article  CAS  Google Scholar 

  21. Senkan, S. High-throughput screening of solid-state catalyst libraries. Nature 1998, 394, 350.

    Article  CAS  Google Scholar 

  22. Senkan, S., Kranta, K., Ozturk, S., Zengin, V., Onal, I. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem Int. Ed. 1999, 38 (18), 2794.

    Article  CAS  Google Scholar 

  23. Ozturk S., Senkan S. Discovery of new fuel-lean NO reduction catalyst leads using combinatorial methodologies. Appl. Catal. B 2000, 38 (3), 243–248.

    Google Scholar 

  24. Senkan, S., Ozturk, S. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry. Angew. Chem Int. Ed. 1999, 38 (6), 791.

    Article  CAS  Google Scholar 

  25. Senkan, S. Combinatorial heterogeneous catalysis—A new path in an old field. Angew. Chem. Int. Ed. 2001, 40, 312.

    Article  CAS  Google Scholar 

  26. Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W., Weinberg, W. H. Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 1999, 38, 2494.

    Article  CAS  Google Scholar 

  27. Rodemerck, U., Ignaszewski, P., Lucas, M., Claus, P., Baerns, M. Parallel synthesis and fast screening of heterogeneous catalysis. Top. Catal. 2000, 13 (3), 249.

    Article  CAS  Google Scholar 

  28. Choi, K., Gardner, D., Hilbrandt, N., Bein, T. Combinatorial methods for the synthesis of aluminophosphate molecular sieves. Angew. Chem. Int Ed. 1999, 38 (19), 2891.

    Article  CAS  Google Scholar 

  29. Bein, T. Efficient assays for combinatorial methods for the discovery of catalysts. Angew. Chem. Int. Ed. 1999, 38 (3), 323.

    Article  CAS  Google Scholar 

  30. Lewis, G.J., Akporiaye, D. E., Bem, D. S., Bratu, C., Dahl, I. M., Karlsson, A., Murray, R. C., Patton, R. L., Plassen, M., Wendelbo, R. Mixed alkali templating in the Si/Al = 3 and 10 systems: A combinatorial study. Stud. Surf. Sci. Catal. 2001, 135, 597.

    CAS  Google Scholar 

  31. Akporiaye, D., Dahl, I., Karlsson, A., Plassen, M., Wendelbo, R., Bem, D. S., Broach, R. W., Lewis, G. J., Miller, M. A., Moscoso, J. Combinatorial chemistry—The emperor’s new clothes? J. Micropor. Mesopor. Mater. 2001, 48 (1–3), 367.

    Article  CAS  Google Scholar 

  32. Holmgren, J. S., Bem, D. S., Bricker, M. L., Gillespie, R. D., Lewis, G. R., Akporiaye, D., Dahl, I., Karlsson, A., Plassen, M., Wendelbo, R. Application of combinatorial tools to the discovery and commercialization of microporous solids: facts and fiction. Stud. Surf. Sci. Catal. 2001, 135, 461–470.

    CAS  Google Scholar 

  33. Plassen, M., Akporiaye, D., Bem, D. S., Dahl, I. M., Karlsson, A., McGonegal, C., Miller, M., Lewis, G., Wendelbo, R. Automating a combinatorial hydrothermal synthesis and characterization. NI Week 2001, 2001, Austin, TX.

    Google Scholar 

  34. Nayar, A., Liu, R., Allen, R. J., McCall, M. J., Willis, R. R., Smotkin, E. S. Laser-activated membrane introduction mass spectrometry for high-throughput evaluation of bulk heterogeneous catalysts. Anal. Chem. 2002, 74 (9), 1933.

    Article  CAS  Google Scholar 

  35. Sun, B., Chan, C., Ramnarayanan, R., Leventry, W. M., Mallouk, T. E., Bare, S. R., Willis, R. R. Split-pool method for synthesis of solid-state material combinatorial libraries. J. Combi. Chem. 2002, 4 (6), 569.

    Article  CAS  Google Scholar 

  36. Kuechl, D. E., Willis, R. R., Bem, D. S., Holmgren, J. S. Optimization of material synthesis using combinatorial methods. Abstracts, 222nd ACS National Meeting, Chicago, 2001, Washington, DC: American Chemical Society.

    Google Scholar 

  37. Basaldella, E. I., Kikot, A., Tara, J. C. Effect of aluminum concentration on crystal size and morphology in the synthesis of a Na/Al zeolite. Mater. Lett. 1997, 31, 83–86.

    Article  CAS  Google Scholar 

  38. Montgomery, D.C. Design and Analysis of Experiments, 4th edn, 1997, New York: John Wiley, p. 604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bricker, M.L., Gillespie, R.D., Holmgren, J.S., Sachtler, J.W.A., Willis, R.R. (2003). Scaling Up of Catalysts Discovered from Small-Scale Experiments. In: Potyrailo, R.A., Amis, E.J. (eds) High-Throughput Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8989-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8989-5_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4749-1

  • Online ISBN: 978-1-4419-8989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics