Scaling Up of Catalysts Discovered from Small-Scale Experiments

  • Maureen L. Bricker
  • Ralph D. Gillespie
  • Jennifer S. Holmgren
  • J. W. Adriaan Sachtler
  • Richard R. Willis


The chemical industry faces a challenging business climate due to difficult economic conditions in much of the world, strong international competition, and worldwide environmental concern. In addition, innovation in this industry has slowed as catalyst and process technology has matured. The need for a methodology that can increase catalyst innovation while continuing to decrease cycle times has been recognized by the Council for Chemical Research (Catalysis Roadmap, Vision 2020) [1]. In the 1980s, the pharmaceutical industry faced similar circumstances. Downward pressure on drug prices became incompatible with the high cost of drug discovery. Combinatorial chemistry, based on advances in laboratory automation, high-throughput synthesis, and activity screening, allowed the pharmaceutical companies to break the innovation impasse [2, 3].


Catalyst Preparation Combinatorial Chemistry Material Synthesis Weight Hourly Space Velocity Reference Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Chemical Society, American Institute of Chemical Engineers, Chemical Manufacturers Association, Council for Chemical Research, and Synthetic Organic Chemical Manufacturers Association. Technology Vision 2020: The U.S. Chemical Industry, December 1996.Google Scholar
  2. 2.
    Fenniri, H. Recent advances at the interface of medicinal and combinatorial chemistry. Views on methodologies for the generation and evaluation of diversity and application to molecular recognition and catalysts. Curr. Med. Chem. 1996, 3, 343.Google Scholar
  3. 3.
    Rohrer, S. P., Birzin, E. T., Mosley, R.T., Berk, S. C., Hutchins, S. Ml., Shen, D-M., Xiong, Y., Hayes, E. C., Parmar, R. M., Foor, F., Mitra, S.W., Degrado, S. J., Shu, M., Klopp, J.M., Cai, S.J., Blake, A., Chan, W. W. S., Pasternak, A., Yang, L., Patchett, A. A., Smith, R. G., Chapman, K. T., Shaeffer, J. M. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 1998, 282, 737.CrossRefGoogle Scholar
  4. 4.
    Mittach, A. Bosch, C., U.S. Patent 993, 144.Google Scholar
  5. 5.
    Hanak, J. J., Gittleman, J. I., Pellicane J. P., Bozowski, S. The effect of grain size on the superconducting transition temperature of the transition metals. Phys. Lett. 1969, 30A (3), 201.Google Scholar
  6. 6.
    Hanak, J. J., Bolker, B.T.F. Calculation of composition of dilute cosputtered multicomponent films. J. Appl. Phys. 1973, 44 (11), 5142.CrossRefGoogle Scholar
  7. 7.
    Gittleman, J. J., Cohen, R.W., Hanak, J. J. Fluctuation rounding of the superconducting transition in the three dimensional regime. Phys. Lett. 1969, 29A (2), 56.Google Scholar
  8. 8.
    Hanak, J. J. The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 1970, 5, 964.CrossRefGoogle Scholar
  9. 9.
    Hanak, J. J., Yocum, P.N. DC-electroluminescent flat panel display, U.S. Gov. Rep. Announce. 1973, 73 (21), 128.Google Scholar
  10. 10.
    Hanak, J. J. Electroluminescence in ZnS: Mnx: Cuy rf-sputtered films. J. Appl. Phys. 1974 (Suppl. 2) (1), 809.Google Scholar
  11. 11.
    Xiang, X.-D., Sun, X., Briceno, G., Lou, Y., Wang, K.-A., Chang, H., Wallace-Freedman, W. G., Chen, S.-W., Schultz, P. G. A combinatorial approach to material discovery. Science 1995, 268, 1738.CrossRefGoogle Scholar
  12. 12.
    Moates, F. C., Somani, M., Annamalai, J., Richardson, J. T., Luss, D., Willson, R. C. Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts. Ind. Eng. Chem. Res. 1996, 35, 4801.CrossRefGoogle Scholar
  13. 13.
    Burgess, K., Porte, A. M. Accelarated synthesis and screening of steroselective transition metal complexes. Adv. Catal. Processes 1997, 2, 69.CrossRefGoogle Scholar
  14. 14.
    Danielson, E., Devenney, M., Giaquinta, D.M., Golden, J. H., Haushalter, R. C., McFarland, E. W., Poojary, D. M., Reaves, C. M., Weinberg, W. H., Wu, X. D. A rare-earth phosphor containing one-dimensional chairs through combinatorial methods. Science 1998, 279, 837.CrossRefGoogle Scholar
  15. 15.
    Hideomi, K., Nobuyoki, M. Combinatorial chemistry of inorganic materials. J.Chem (Jpn) 1998, 4, 70.Google Scholar
  16. 16.
    Reddington, E., Sapeena, A., Gurau, B., Viswanthan, R., Sarongapani, S., Smotkin, E. S., Mallouk, T. E. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735.CrossRefGoogle Scholar
  17. 17.
    Hoffman, C., Wolf, A., Schuth, F. Parallel synthesis and testing of catalysts under nearly conventional testing conditions. Angew. Chem. Int. Ed. 1999, 38 (18), 2800.CrossRefGoogle Scholar
  18. 18.
    Klein, J., Lehmann, C. W., Schmidt, H-W., Maier, W. F. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed. 1998, 38 (24), 3369.CrossRefGoogle Scholar
  19. 19.
    Orschel, M., Klein, J., Schmidt, H-W., Maier, W. F. Detection of reaction selectivity on catalyst libraries by spatially resolved mass spectrometry. Angew. Chem. Int. Ed. 1999, 38 (18), 2791CrossRefGoogle Scholar
  20. 20.
    Akporiaye, D. E., Dahl, I. M., Karlsson, A., Wendelbo, R. Combinatorial approach to the hydrothermal synthesis of zeolites. Angew. Chem. Int. Ed. 1998, 37 (5), 609–611CrossRefGoogle Scholar
  21. 21.
    Senkan, S. High-throughput screening of solid-state catalyst libraries. Nature 1998, 394, 350.CrossRefGoogle Scholar
  22. 22.
    Senkan, S., Kranta, K., Ozturk, S., Zengin, V., Onal, I. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem Int. Ed. 1999, 38 (18), 2794.CrossRefGoogle Scholar
  23. 23.
    Ozturk S., Senkan S. Discovery of new fuel-lean NO reduction catalyst leads using combinatorial methodologies. Appl. Catal. B 2000, 38 (3), 243–248.Google Scholar
  24. 24.
    Senkan, S., Ozturk, S. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry. Angew. Chem Int. Ed. 1999, 38 (6), 791.CrossRefGoogle Scholar
  25. 25.
    Senkan, S. Combinatorial heterogeneous catalysis—A new path in an old field. Angew. Chem. Int. Ed. 2001, 40, 312.CrossRefGoogle Scholar
  26. 26.
    Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W., Weinberg, W. H. Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 1999, 38, 2494.CrossRefGoogle Scholar
  27. 27.
    Rodemerck, U., Ignaszewski, P., Lucas, M., Claus, P., Baerns, M. Parallel synthesis and fast screening of heterogeneous catalysis. Top. Catal. 2000, 13 (3), 249.CrossRefGoogle Scholar
  28. 28.
    Choi, K., Gardner, D., Hilbrandt, N., Bein, T. Combinatorial methods for the synthesis of aluminophosphate molecular sieves. Angew. Chem. Int Ed. 1999, 38 (19), 2891.CrossRefGoogle Scholar
  29. 29.
    Bein, T. Efficient assays for combinatorial methods for the discovery of catalysts. Angew. Chem. Int. Ed. 1999, 38 (3), 323.CrossRefGoogle Scholar
  30. 30.
    Lewis, G.J., Akporiaye, D. E., Bem, D. S., Bratu, C., Dahl, I. M., Karlsson, A., Murray, R. C., Patton, R. L., Plassen, M., Wendelbo, R. Mixed alkali templating in the Si/Al = 3 and 10 systems: A combinatorial study. Stud. Surf. Sci. Catal. 2001, 135, 597.Google Scholar
  31. 31.
    Akporiaye, D., Dahl, I., Karlsson, A., Plassen, M., Wendelbo, R., Bem, D. S., Broach, R. W., Lewis, G. J., Miller, M. A., Moscoso, J. Combinatorial chemistry—The emperor’s new clothes? J. Micropor. Mesopor. Mater. 2001, 48 (1–3), 367.CrossRefGoogle Scholar
  32. 32.
    Holmgren, J. S., Bem, D. S., Bricker, M. L., Gillespie, R. D., Lewis, G. R., Akporiaye, D., Dahl, I., Karlsson, A., Plassen, M., Wendelbo, R. Application of combinatorial tools to the discovery and commercialization of microporous solids: facts and fiction. Stud. Surf. Sci. Catal. 2001, 135, 461–470.Google Scholar
  33. 33.
    Plassen, M., Akporiaye, D., Bem, D. S., Dahl, I. M., Karlsson, A., McGonegal, C., Miller, M., Lewis, G., Wendelbo, R. Automating a combinatorial hydrothermal synthesis and characterization. NI Week 2001, 2001, Austin, TX.Google Scholar
  34. 34.
    Nayar, A., Liu, R., Allen, R. J., McCall, M. J., Willis, R. R., Smotkin, E. S. Laser-activated membrane introduction mass spectrometry for high-throughput evaluation of bulk heterogeneous catalysts. Anal. Chem. 2002, 74 (9), 1933.CrossRefGoogle Scholar
  35. 35.
    Sun, B., Chan, C., Ramnarayanan, R., Leventry, W. M., Mallouk, T. E., Bare, S. R., Willis, R. R. Split-pool method for synthesis of solid-state material combinatorial libraries. J. Combi. Chem. 2002, 4 (6), 569.CrossRefGoogle Scholar
  36. 36.
    Kuechl, D. E., Willis, R. R., Bem, D. S., Holmgren, J. S. Optimization of material synthesis using combinatorial methods. Abstracts, 222nd ACS National Meeting, Chicago, 2001, Washington, DC: American Chemical Society.Google Scholar
  37. 37.
    Basaldella, E. I., Kikot, A., Tara, J. C. Effect of aluminum concentration on crystal size and morphology in the synthesis of a Na/Al zeolite. Mater. Lett. 1997, 31, 83–86.CrossRefGoogle Scholar
  38. 38.
    Montgomery, D.C. Design and Analysis of Experiments, 4th edn, 1997, New York: John Wiley, p. 604.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Maureen L. Bricker
    • 1
  • Ralph D. Gillespie
    • 1
  • Jennifer S. Holmgren
    • 1
  • J. W. Adriaan Sachtler
    • 1
  • Richard R. Willis
    • 1
  1. 1.UOP LLCDes PlainesUSA

Personalised recommendations