Skip to main content

Intrinsic Fiber-Optic Sensors for Spatially Resolved Combinatorial Screening

  • Chapter
High-Throughput Analysis

Abstract

Computational methods for the calculation of the structure and properties of molecules have achieved a high degree of accuracy. However, structure-based drug design, while being a powerful approach, often does not afford the reliability needed for targeted synthesis of molecules that show a desired drug action. An alternative approach is the synthesis of large numbers of compounds and the systematic evaluation of these compounds for a desired effect. This approach led to the development of the field of combinatorial chemistry. For the combinatorial approach to be effective, three basic questions must be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lam, K. S., Lebl, M., Krchnák, V. The “one-bead-one-compound” combinatorial library method. Chem. Rev. 1997, 97, 411–448.

    Article  CAS  Google Scholar 

  2. Pirrung, M. C. Spatially addressable combinatorial libraries. Chem. Rev. 1997, 97, 473–488.

    Article  CAS  Google Scholar 

  3. Schwabacher, A.W., Shen, Y., Johnson, C.W. Fourier transform combinatorial chemistry. J. Am. Chem. Soc. 1999, 121, 8669–8670.

    Article  CAS  Google Scholar 

  4. Marcuse, D. Theory of Dielectric Optical Waveguides, 2nd ed., 1999, Boston, MA: Academic Press.

    Google Scholar 

  5. Snyder, A. W., Love, J. D. Optical Waveguide Theory 1983, London: Chapman & Hall.

    Google Scholar 

  6. Harrick, N. J. Internal Reflection Spectroscopy 1967, New York: Wiley-Interscience.

    Google Scholar 

  7. Harrick, N. J. Electric field strengths at totally reflecting interfaces. J. Opt. Soc. Am. 1965, 55, 851–857.

    Article  Google Scholar 

  8. Newton, I. Opticks, vol. 3, 2nd ed., 1717.

    Google Scholar 

  9. Quincke, G. Optische Experimental Untersuchungen. Über das Eindringen des total reflektierten Lichtes in das dünnere Medium. Ann. Phys. (Leipzig) 1866, 127, 1–29.

    Google Scholar 

  10. Quincke, G. Optische Experimental-Untersuchungen. II. Über die elliptische Polarisation des bei totaler Reflexion eingedrungenen oder zurück-geworfenen Lichtes. Ann. Phys. (Leipzig) 1866, 127, 199.

    Google Scholar 

  11. Hall, E. E. The penetration of totally reflected light into the rarer medium. Phys. Rev. 1902, 15, 73–106.

    Google Scholar 

  12. Sélényi, P. Sur l’exi stence et l’observation des ondes lumineuses sphériques inhornogènes C. R. Acad. Sci. Paris 1913, 157, 1408.

    Google Scholar 

  13. Schaefer, C., Gross, G. Untersuchungen über die Totalreflexion. Ann. Phys. (Leipzig) 1910, 32, 648–672.

    Google Scholar 

  14. Drexhage, K. H. Monomolecular layers and light. Sci. Am. 1970, 222, 108–119.

    Article  CAS  Google Scholar 

  15. Goos, F., Hänchen, H. Über das Eindringen des total reflektierten Lichtes in das dünnere Medium. Ann. Phys. (Leipzig) 1943, 43, 383–392.

    Google Scholar 

  16. Goos, F., Hänchen, H. Ein neuer und fundamental Versuch zur Totalreflexion. Ann. Phys. (Leipzig) 1947, 1, 333.

    Google Scholar 

  17. Goos, F., Linberg-Hänchen, H. Neumessung des Strahlversetzungseffektes bei Totalreflexion. Ann. Phys. (Leipzig) 1949, 5, 251.

    Google Scholar 

  18. Renard, R. H. Total reflection: A new evaluation of the Goos-Hänchen shift. J. Opt. Soc. Am. 1964, 54, 1190–1197.

    Article  Google Scholar 

  19. MacChesney, J. B., DiGiovanni, D. J. Materials development of optical fiber. J. Am. Ceram. Soc. 1990, 73, 3537–3556.

    Article  CAS  Google Scholar 

  20. Thomas, G. A., Shraiman, B. I., Glodis, P. F., Stephen, M. J. Towards the clarity limit in optical fibres. Nature 2000, 404, 262–264.

    Article  CAS  Google Scholar 

  21. Culshaw, B. Basic concepts of optical fiber sensors. In B. Culshaw and J.P. Dakin (Eds.), Optical Fiber Sensors: Systems and Components, Vol. 1, 1988, Norwood, MA: Artech House, pp. 9–24.

    Google Scholar 

  22. Paul, P. H., Kychakoff, G. Fiber-optic evanescent field absorption sensor. Appl. Phys. Lett. 1987, 51, 12.

    Article  Google Scholar 

  23. Blair, D. S., Burgess, L. W., Brodsky, A. M. Study of analyte diffusion into a silicone-clad fiber-optic chemical sensor by evanescent wave spectroscopy. Appl. Spectrosc. 1995, 49, 1636–1645.

    Article  CAS  Google Scholar 

  24. Egami, C., Takeda, K., Isai, M., Ogita, M. Evanescent wave spectroscopic fiber optic pH sensor. Opt. Commun. 1996, 122, 122–126.

    Article  CAS  Google Scholar 

  25. Gupta, B. D., Khijwania, S. K. Experimental studies on the response of the fiber optic evanescent field absorption sensor. Fiber Integr. Opt. 1998, 17, 63–73.

    Article  CAS  Google Scholar 

  26. Dakin, J. P., Pratt, D. J. Fibre-optic distributed temperature measurement-a comparative study of techniques. Proc. IEE Colloquium on Distributed Optical Fibre Sensors, 1986, London: The Institute of Electrical Engineers, pp. 10/11–16.

    Google Scholar 

  27. Culshaw, B., Davies, D. E. N., Kingsley, S. A. Acoustic sensitivity of optical-fibre waveguides. Electron. Lett. 1977, 13, 760–761.

    Article  Google Scholar 

  28. Fields, J. N. Coupled waveguide acoustooptic hydrophone. Appl. Opt. 1979, 18, 3533–3534.

    Article  CAS  Google Scholar 

  29. DeGrandpre, M. D., Burgess, L. W. Long path fiber-optic sensor for evanescent field absorbance measurements. Anal. Chem. 1988, 60, 2582–2586.

    Article  CAS  Google Scholar 

  30. Vo-Dinh, T., Nolan, T., Cheng, Y. F., Alarie, J. P., Spaniak, M. J. A fiber optic antibody-based biosensor with time-resolved detection. Proc. Conf. on Chemical, Biochemical, and Environmental Fiber Sensors, 1989, Boston. MA: The International Society for Optical Engineering (SPIE) pp. 266–272.

    Google Scholar 

  31. Hale, Z. M., Payne, F. P. Demonstration of an optimized evanescent field optical fibre sensor Anal. Chim. Acta 1994, 293, 49–54.

    Article  CAS  Google Scholar 

  32. Lieberman, R. A., Blyler, L. L., Cohen, L. G. A Distributed fiber optic sensor based on cladding fluorescence. J. Lightwave Technol. 1990, 8, 212–220.

    Article  CAS  Google Scholar 

  33. Marcuse, D. Launching light into fiber cores from sources located in the cladding. J. Lightwave Technol. 1988, 6, 1273–1279.

    Article  Google Scholar 

  34. Christensen, D., Andrade, J., Wang, J., Ives, J., Yoshida, D. Evanescent-wave coupling of fluorescence into guided modes: FDTD analysis. Proc. Conf. on Chemical, Biochemical, and Environmental Fiber Sensors, 1989, Boston, MA: The International Society for Optical Engineering (SPIE) pp. 70–74.

    Google Scholar 

  35. Ueno, Y., Shimizu, M. An optical fiber fault location method. IEEE J. Quantum Electron. 1975, QE-11, 77D–78D.

    Google Scholar 

  36. Ueno, Y., Shirnizu, M. Optical fiber fault location method. Appl. Opt. 1976, 15, 1385–1388.

    Article  CAS  Google Scholar 

  37. Personick, S. D. Photon probe—An optical-fiber time-domain reflectometer. Bell Syst. Tech. J. 1977, 56, 355–366.

    Google Scholar 

  38. Barnoski, M. K., Jensen, S. M. Fiber Waveguides: A novel technique for investigating attenuation. Appl. Opt. 1976, 15, 2112–2115.

    Article  CAS  Google Scholar 

  39. Barnoski, M. K., Rourke, M. D., Jensen, S. M., Melville, R. T. Optical time domain reflectometer. Appl. Opt. 1977, 16, 2375–2379.

    Article  CAS  Google Scholar 

  40. Kharaz, A., Jones, B. E. A distributed fiber optic sensing system for humidity measurements. Meas. Control 1995, 28, 101–103.

    Google Scholar 

  41. Kvasnik, F., McGrath, A. D. Distributed chemical sensing utilising evanescent wave interactions. Proc. Conf. on Chemical, Biochemical, and Environmental Fiber Sensors 1989, Boston. MA: The International Society for Optical Engineering (SPIE), pp. 75–82.

    Google Scholar 

  42. Browne, C. A., Tarrant, D. H., Olteanu, M. S., Mullens, J. W., Chronister, E. L. Intrinsic sol-gel clad fiber-optic sensors with time-resolved detection. Anal. Chem. 1996, 68, 2289–2295.

    Article  CAS  Google Scholar 

  43. Dakin, J. P. Distributed optical fiber sensors. Proc. Conf. on Distributed and Multiplexed Fiber Optic Sensors II, 1992, Boston. MA: The International Society for Optical Engineering (SPIE), pp. 76–108.

    Google Scholar 

  44. Prince, B. J., Schwabacher, A. W., Geissinger, P. A readout scheme for closely packed fluorescent chemosensors on optical libers. Anal. Chem. 2001, 73, 1007–1015.

    Article  CAS  Google Scholar 

  45. Blyler, L. L., Lieberman, R. A., Cohen, L. G., Ferrara, J. A., MacChesney, J. B. Optical fiber chemical sensors utilizing dye-doped silicone polymer claddings. Polym. Eng. Sci. 1989, 29, 1215–1218.

    Article  CAS  Google Scholar 

  46. Gloge, D. Dispersion in weakly guiding fibers, Appl. Opt. 1971, 10, 2442–2445.

    Article  CAS  Google Scholar 

  47. Prince, B. J., Schwabacher, A. W., Geissinger, P. Fluorescent fiber-optic sensor arrays probed utilizing evanescent fiber-fiber coupling. Appl. Spectrosc. 2001, 55, 1018–1024.

    Article  CAS  Google Scholar 

  48. Prince, B. J., Schwabacher, A. W., Geissinger, P. An optical readout scheme providing high spatial resolution for the evaluation of combinatorial libraries on optical fibers. J. Assoc. Lab. Autom. 2002, 7, 66–73.

    Article  CAS  Google Scholar 

  49. Gloge, D. Weakly guiding fibers. Appl. Opt. 1971, 10, 2252–2258.

    Article  CAS  Google Scholar 

  50. Payne, F. P., Hale, Z. M. Deviation from Beer’s law in multimode optical fibre evanescent field sensors. Int. J. Optoelectron. 1993, 8, 743–748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geissinger, P., Schwabacher, A.W. (2003). Intrinsic Fiber-Optic Sensors for Spatially Resolved Combinatorial Screening. In: Potyrailo, R.A., Amis, E.J. (eds) High-Throughput Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8989-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8989-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4749-1

  • Online ISBN: 978-1-4419-8989-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics