Continuous Hierarchical Fair Competition Model for Sustainable Innovation in Genetic Programming

  • Jianjun Hu
  • Erik D. Goodman
  • Kisung Seo
Part of the Genetic Programming Series book series (GPEM, volume 6)


Lack of sustainable search capability of genetic programming has severely constrained its application to more complex problems. A new evolutionary algorithm model named the continuous hierarchical fair competition (CHFC) model is proposed to improve the capability of sustainable innovation for single population genetic programming. It is devised by extracting the fundamental principles underlying sustainable biological and societal processes originally proposed in the multi-population HFC model. The hierarchical elitism, breeding probability distribution and individual distribution control over the whole fitness range enable CHFC to achieve sustainable evolution while enjoying flexible control of an evolutionary search process. Experimental results demonstrate its capability to do robust sustainable search and avoid the aging problem typical in genetic programming.

Key words

Genetic programming sustainable innovation HFC fair competition principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burke, E., Gustafson, S. and Kendall, G. (2002). A Survey and Analysis of Diversity Measures in Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation Conference. New York, July.Google Scholar
  2. De Jong K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems Doctoral Dissertation, University of Michigan. Dissertation Abstracts Int. 36 5140B (University Microfilms 76-9381).Google Scholar
  3. Goldberg, D. E. (1990). A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-oriented Simulated Annealing. Complex Systems 4: 445-460zbMATHGoogle Scholar
  4. Goldberg, D. E. and Richardson, J. (1987). Genetic Algorithms with Sharing for Multimodal Function Optimization. In Proceedings of the 2nd Int. Conf. on Genetic Algorithms. Cambridge, MA, J. J. Grefenstette.Google Scholar
  5. Hu, J. and Goodman, E. D. (2002). Hierarchical Fair Competition Model for Parallel Evolutionary Algorithms. In Proceedings of the Congress on Evolutionary Computation, CEC 2002, IEEE World Congress on Computational Intelligence, Honolulu, Hawaii.Google Scholar
  6. Hu, J., Goodman, E. D., Seo, K. and Pei, M. (2002). Adaptive Hierarchical Fair Competition (AHFC) Model for Parallel Evolutionary Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 772-779. New York.Google Scholar
  7. Hu, J., Goodman, E. D., Seo, K., Fan, Z. and Rosenberg, R. C. (2003). HFC: a Continuing EA Framework for Scalable Evolutionary Synthesis. In Proceedings of the AAAI-2003 Spring Symposium on Computational Synthesis. Stanford, CA. AAAI Press.Google Scholar
  8. Hu, J., Seo, K., Fan, Z., Rosenberg, R. C, and Goodman, E. D. (2003). HEMO: A Sustainable Multi-Oobjective Evolutionary Optimization Framework. To appear in Proceedings of the Genetic and Evolutionary Computation Conference. Chicago.Google Scholar
  9. Hutter, M. (2002). Fitness Uniform Selection to Preserve Genetic Diversity. In Proceedings of the 2002 Congress on Evolutionary Computation, 783-788. Hawaii.Google Scholar
  10. Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge Massachusetts: MIT Press.zbMATHGoogle Scholar
  11. Koza, J., Bennett, F. H, Andre, D., and Keane, M. (1999). A. Genetic Programming III. San Francisco, CA: Morgan Kauffmann.Google Scholar
  12. Langdon, W. B. (1998). Genetic Programming and Data Structures. Dordrecht: Kluwer.zbMATHCrossRefGoogle Scholar
  13. Li, J. P., Balazs, M., Parks, G. T., and Clarkson, P. J. (2002). A Species Conserving Genetic Algorithm for Multimodal Function Optimization. Evolutionary Computation 10(3): 207-234CrossRefGoogle Scholar
  14. Luke, S. (2001). When short runs beat long runs. In GECCO-2001: InProceedings of the Genetic and Evolutionary Computation Conference, pp. 74-80. Lee Spector et al, eds. Morgan Kaufmann.Google Scholar
  15. Maza, M. de la and Tidor, B. (1991). Boltzmann Weighted Selection Improves Performance of Genetic Algorithms. A. I. Memo 1345. Artificial Intelligence Laboratory, MIT, Cambridge.Google Scholar
  16. Mengshoel, O. J. and Goldberg, D. E. (1999). Probabilistic Crowding: Deterministic Crowding with Probabilisitic Replacement. In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 409-416. Orlando, Florida, USA.Google Scholar
  17. Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature 150: 563-565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jianjun Hu
    • 1
  • Erik D. Goodman
    • 1
  • Kisung Seo
    • 1
  1. 1.Genetic Algorithm Research & Application Group (GARAGe)Michigan State UniversityEast LansingUSA

Personalised recommendations