Advertisement

An Essay Concerning Human Understanding of Genetic Programming

  • Lee Spector
Part of the Genetic Programming Series book series (GPEM, volume 6)

Abstract

This chapter presents a personal perspective on the relation between theory and practice in genetic programming. It posits that genetic programming practice (including both applications and technique enhancements) is moving toward biology and that it should continue to do so. It suggests as a consequence that future-oriented genetic programming theory (mathematical theory, developed to help analyze, understand, and predict system behavior) should also borrow, increasingly, from biology. It presents specific challenges for theory vis-à-vis recent technique enhancements, and briefly discusses possibilities for new forms of theory that will be relevant to the leading edge of genetic programming practice.

Key words

biology development representation diversification phylogeography visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, C. (1998). An Introduction to Artificial Life. Berlin: Springer Verlag.CrossRefGoogle Scholar
  2. Altenberg, L. (1994). The Evolution of Evolvability in Genetic Programming. In Advances in Genetic Programming, Kinnear, K. E. Jr. (Ed. ), pp. 47–74. The MIT Press.Google Scholar
  3. Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Harvard University Press.Google Scholar
  4. Back. T. and Schwefel, H. P. (1995). “Evolution Strategies I: Variants and their computational implementation. ” In Genetic Algorithms in Engineering and Computer Science, P. Cuest, et al (Eds. ). John. Wiley & Sons. Ltd.Google Scholar
  5. Banzhaf. W. (2003). Artificial Regulatory Networks and Genetic Programming. In Genetic Programming, Theory and Practice, Rick. L. Riolo. and Bill. Worzel. (Eds. ). Kluwer.Google Scholar
  6. Barnum, H., Bernstein, H. J. and Spector, L. (2000). Quantum circuits for OR and AND of ORs. Journal of Physics A: Mathematical and General, 33(45): 8047–8057.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Burke, E., Gustafson, S. and Kendall, G. (2002). A Survey And Analysis Of Diversity Measures in Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation Con-ference (GECCO 2002), W. B. Langdon, et al. (Eds. ), pp. 716–723. San Francisco, CA: Morgan Kaufmann.Google Scholar
  8. Downing, K. L. (2001). Reinforced Genetic Programming. Genetic Programming and Evolvable Machines 2(3): 259–288.zbMATHCrossRefGoogle Scholar
  9. Edmonds, B. (2001). Meta-Genetic Programming: Co-evolving the Operators of Variation. Elektrik, the Turkish Journal of Electrical Engineering and Computer Sciences 9(1): 13–29.Google Scholar
  10. Fernandez, F., Tomassini, M. and Vanneschi, L. (2003). An Empirical Study of Multipopulation Genetic Programming. Genetic Programming and Evolvable Machines 4(1): 21–51.zbMATHCrossRefGoogle Scholar
  11. Ferreira, C. (2001). Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13(2).Google Scholar
  12. Hansen, J. V. (2003). Genetic Programming Experiments with Standard and Homologous Crossover Methods. Genetic Programming and Evolvable Machines 4(1): 53–66.zbMATHCrossRefGoogle Scholar
  13. Holland, J. H. (1992). Adaptation in Natural and Artificial Systems, second edition. The MIT Press, Cambridge, MA.Google Scholar
  14. Karp, R. M. (2002). Mathematical Challenges from Genomics and Molecular Biology. Notices of the AMS 49(5): 544–553.MathSciNetzbMATHGoogle Scholar
  15. Keijzer, M. (1996). Efficiently Representing Populations in Genetic Programming. In Advances in Genetic Programming 2, Angeline, J., and Kinnear, K. E. Jr. (Eds. ), pp. 259–278. The MIT Press.Google Scholar
  16. Keller, E. F. (2000). The Century of the Gene. Harvard University Press.Google Scholar
  17. Keller, E. F. (2002). Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Harvard University Press.Google Scholar
  18. Keller, R. E. and Banzhaf, W. (2001). Evolution of Genetic Code on a Hard Problem. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 50–56. Morgan Kaufmann.Google Scholar
  19. Kinnear, K. E. Jr. (1994). Alternatives in Automatic Function Definition: A Comparison of Per-formance. In Advances in Genetic Programming, Kinnear, K. E. Jr. (Ed. ), pp. 119–141. The MIT Press.Google Scholar
  20. Klein, J. (2002). breve: a 3D Environment for the Simulation of Decentralized Systems and Artificial Life. In Proceedings of Artificial Life VIII, The 8th International Conference on the Simulation and Synthesis of Living Systems, pp. 329–334. The MIT Press.Google Scholar
  21. Koza, John R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press, Cambridge, MA, USA.zbMATHGoogle Scholar
  22. Koza, J. R. (1995). Gene Duplication to Enable Genetic Programming to Concurrently Evolve Both the Architecture and Work-Performing Steps of a Computer Program. In IJCAI-95 Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 734–740. San Francisco, CA: Morgan Kaufmann.Google Scholar
  23. Koza, J. R., Andre, D., Bennett, F. H. III and Keane, M. (1999). Genetic Programming 3: Dar-winian Invention and Problem Solving. Morgan Kaufman, San Francisco, CA, USA.Google Scholar
  24. Margulis, L. (2000). Symbiotic Planet. Basic Books.Google Scholar
  25. Maynard Smith, J., and Szathmáry, E. (1999). The Origins of Life. Oxford University Press.Google Scholar
  26. Nikolaev, N. I., Iba, H. and Slavov, V. (1999). Inductive Genetic Programming with Immune Network Dynamics. In Advances in Genetic Programming 3, L. Spector et al. (Eds), pp. 355–376. The MIT Press.Google Scholar
  27. Nordin, P., Banzhaf, W. and Francone, F. D. (1999). Efficient Evolution of Machine Code for CISC Architectures using Instruction Blocks and Homologous Crossover. In Advances in Genetic Programming 3, L. Spector et al. (Eds. ), pp. 275–299. The MIT Press, Cambridge, MA, USA.Google Scholar
  28. Poli, R. (2001). General Schema Theory for Genetic Programming with Subtree-Swapping Crossover. In Genetic Programming, Proceedings of EuroGP 2001, J. F. Miller et al. (Eds. ), pp. 143–159. Springer Verlag.Google Scholar
  29. Poli, R., and Langdon, W. B. (1999). Sub-machine-code Genetic Programming. In Advances in Genetic Programming 3, Spector, L., et al. (Eds. ), pp. 301–323. The MIT Press.Google Scholar
  30. Poli, R., Rowe, J. E. and McPhee, N. F. (2001). Markov Chain Models for GP and Variable-length GAs with Homologous Crossover. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 112–119. San Francisco, CA: Morgan Kaufmann.Google Scholar
  31. Punch, W. F. and Rand, W. M. (2000). GP+Echo+Subsumption = Improved Problem Solving. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 411–418. San Francisco, CA: Morgan Kaufmann.Google Scholar
  32. Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. Diploma thesis, Institut für Informatik, Technische Universität München.Google Scholar
  33. Spector, L. and Robinson, A. (2002). Genetic Programming and Autoconstructive Evolution with the Push Programming Language. Genetic Programming and Evolvable Machines 3(1): 7–40.zbMATHCrossRefGoogle Scholar
  34. Spector, L. and Klein, J. (2002). Evolutionary Dynamics Discovered via Visualization in the BREVE Simulation Environment. In Workshop Proceedings of the 8th International Conference on the Simulation and Synthesis of Living Systems, pp. 163–170. Sydney, Australia: University of New South Wales.Google Scholar
  35. Spector, L., Klein, J., Perry, C, and Feinstein, M. (2003). Emergence of Collective Behavior in Evolving Populations of Flying Agents. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2003), Cantu-Paz, E., et al. (Eds. ), pp. 61–73. Springer-Verlag.Google Scholar
  36. Spector, L. and Stoffel, K. (1996). Ontogenetic programming. In Genetic Programming 1996: Proceedings of the First Annual Conference (Cambridge, MA, 28–31 July 1996), J. R. Koza (Eds. ), pp. 394–399 The MIT Press.Google Scholar
  37. Teller, A. (1999). The Internal Reinforcement of Evolving Algorithms. In Advances in Genetic Programming 3, L. Spector et al. (Eds. ), pp. 325–354. The MIT Press.Google Scholar
  38. Wu, A. S. and Garibay, I. (2002). The Proportional Genetic Algorithm: Gene Expression in a Genetic Algorithm. Genetic Programming and Evolvable Machines 3(2): 157–192.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Lee Spector
    • 1
  1. 1.Cognitive ScienceHampshire CollegeAmherstUSA

Personalised recommendations