Skip to main content

Pseudoallelism and Gene Evolution

  • Chapter
Genes, Development and Cancer
  • 349 Accesses

Abstract

It is the purpose of this paper to consider some of the ways in which “pseudoalleles” (McClintock, 1944), or closely linked genes having similar effects, may provide clues to the mode of origin of new kinds of genes.Our underlying thesis will be that in those instances of pseudoallelism in which there is evidence for close functional similarity among the component genes we may come close to seeing the direct results of a process which produces new genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonner D. M., 1950, The Q locus of Neurospora. Genetics 35: 655–656 (abstract).

    Google Scholar 

  • Bridges C. B., 1935, Salivary chromosome maps. J. Hered. 26: 60–64.

    Google Scholar 

  • Bridges C. B., and Brehme K. S., 1944, The mutants of Drosophila melanogaster. Publ. Carneg. Instn. 552.

    Google Scholar 

  • Dobzhansky T., 1930, The manifold effects of the genes Stubble and stubbloid in Drosophila melanogaster. Zeit. indukt. Abstam. u-Vererb-Lehre 54: 427–457.

    Google Scholar 

  • Dunn L. C., and Caspari E., 1942, Close linkage between mutations with similar effects. Proc. Nat. Acad. Sci., Wash. 28: 205–210.

    Article  CAS  Google Scholar 

  • Dunn L. C., and Caspari E., 1945, A case of neighboring loci with similar effects. Genetics 30: 543–568.

    Google Scholar 

  • Ephrussi B., and Sutton E., 1944, A reconsideration of the mechanism of position effect. Proc. Nat. Acad. Sci., Wash. 30: 183–197.

    Article  CAS  Google Scholar 

  • Green M. M., and Green, K. C., 1949, Crossing-over between alleles at the lozenge locus in Drosophila melanogaster. Proc. Nat. Acad. Sci., Wash. 35: 586–591.

    Article  CAS  Google Scholar 

  • Horowitz N. H., 1950, Biochemical genetics of Neurospora. Advances in Genetics 3: 33–71.

    Article  PubMed  CAS  Google Scholar 

  • Houlahan M. B., Beadle G. W., and Calhoun H. G., 1949, Linkage studies with biochemical mutants of Neurospora crassa. Genetics 34: 493–507.

    PubMed  CAS  Google Scholar 

  • Komai T., and Takaku T., 1949, A study on the closely linked genes, miniature and dusky, in Drosophila virilis, with some considerations on the allelism of genes. Cytologia 14: 87–97.

    Article  Google Scholar 

  • Laughnan J. R., 1949, The action of allelic forms of the gene A in maize II. The relation of crossing over to mutation of Ab. Proc. Nat. Acad. Sci., Wash. 35: 167–178.

    Article  CAS  Google Scholar 

  • 1950, The action of allelic forms of the gene A in maize. III. Studies on the occurrence of isoquercitrin in brown and purple plants and its lack of identity with the brown pigments. Proc. Nat. Acad. Sci., Wash. 36: 312–318.

    Google Scholar 

  • Lewis D., 1947, Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1: 85–108.

    Article  Google Scholar 

  • Lewis D., 1949, Structure of the incompatibility gene. Heredity 3: 339–355.

    Article  PubMed  CAS  Google Scholar 

  • Lewis E. B., 1942, The Star and asteroid loci in Drosophila melanogaster. Genetics 27: 153–154 (abstract).

    Google Scholar 

  • Lewis E. B., 1945, The relation of repeats to position effects in Drosophila melanogaster. Genetics 30: 137–166.

    PubMed  CAS  Google Scholar 

  • Lewis E. B., 1948, Pseudo-allelism in Drosophila melanogaster, Genetics 33: 113 (abstract).

    PubMed  CAS  Google Scholar 

  • Lewis E. B., 1949, A study of adjacent genes. Heredity 3: 130 (abstract).

    Article  Google Scholar 

  • Lewis E. B., 1950, The phenomenon of position effect. Advances in Genetics 3: 73–115.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B., 1944, The relation of homozygous deficiencies to mutations and allelic series in maize. Genetics 29: 478–502.

    PubMed  CAS  Google Scholar 

  • Metz C.W., 1937, Small deficiencies and the problem of genetic units in the giant chromosomes. Genetics 22: 543–556.

    PubMed  CAS  Google Scholar 

  • Metz C.W., 1947, Duplication of chromosome parts as a factor in evolution. Amer. Nat. 81: 81–103.

    Article  CAS  Google Scholar 

  • Muller H. J., 1932, Further studies on the nature and causes of gene mutations. Proc. Sixth Intern. Cong. Genet. 1: 213–255.

    Google Scholar 

  • Muller H. J., and Prokofyeva A. A., 1935, The individual gene in relation to the chromomere and the chromosome. Proc. Nat. Acad. Sci., Wash. 21: 16–26.

    Article  CAS  Google Scholar 

  • Offerman C. A., 1935, The position effect and its bearing on genetics. Bull. Acad. Sci. U. R. S. S. Ser. Biol. 159–170.

    Google Scholar 

  • Oliver C. P., 1940, A reversion to wild-type associated with crossing-over in Drosophila melanogaster. Proc. Nat. Acad. Sci., Wash. 26: 452–454.

    Article  CAS  Google Scholar 

  • Oliver C. P., and Green M. M., 1944, Heterosis in compounds of lozenge alleles in Drosophila melanogaster. Genetics 29: 331–347.

    PubMed  CAS  Google Scholar 

  • Pontecorvo G., 1950, New fields in the biochemical genetics of micro-organisms. Biochem. Soc. Symposia 4: 40–50.

    CAS  Google Scholar 

  • Roper J. A., 1950, Search for linkage between genes determining a vitamin requirement, Nature, Lond. 166: 956–957.

    Article  CAS  Google Scholar 

  • Sando C. E., and Bartlett H. E., 1922, Pigments of the Mendelian color types in maize: Isoquercitin from brown-husked maize. J. Biol. Chem. 54: 629–645.

    CAS  Google Scholar 

  • Serebrovsky A. S., 1930, Untersuchungen uber Treppenallelomorphismus. IV. Transgenation scute-6 und ein Fall des ‘Nicht-Allelomorphismus’ von Gliedern einer Allelomorphenereihe bei Drosophila melanogaster. Arch. Entw.-mech. Org. 122: 88–104.

    Article  Google Scholar 

  • Serebrovsky A. S., 1938, Genes scute and achaete in Drosophila melanogaster and a hypothesis of gene divergency. C. R. (Dokl) Acad. Sci. U. R. S. S. 19: 77–81.

    Google Scholar 

  • Snodgrass R. E., 1935, Principles of Insect Physiology. New York McGraw-Hill.

    Google Scholar 

  • Stadler L. J., 1946, Spontaneous mutation at the R locus in maize. I. The aleurone-color and plant-color effects. Genetics 31: 377–394.

    Google Scholar 

  • Stadler L. J., 1951, Spontaneous mutation in maize. Cold Spring Harb. Symposium Quant. Biol. 16.

    Google Scholar 

  • Stephens S. G., 1948, A biochemical basis for the pseudo-allelic anthocyanin series in Gossypium. Genetics 33: 191–214.

    PubMed  CAS  Google Scholar 

  • Stephens S. G., 1948, Spectrophotometric evidence for the presence of a leuco precursor of both anthoxanthin and anthocyan pigments in Asiatic cotton flowers. Arch. Biochem. 18: 449–459.

    PubMed  CAS  Google Scholar 

  • Stormont C., Owen R. D., and Irwin M. R., 1951, The B and C systems of bovine blood groups. Genetics 36: 134–161.

    PubMed  CAS  Google Scholar 

  • Stern C., and Schaeffer E. W., 1943, On primary attributes of alleles in Drosophila melanogaster. Proc. Nat. Acad. Sci., Wash. 29: 351–361.

    Article  CAS  Google Scholar 

  • Sturtevant A. H., 1925, The effects of unequal crossing over at the bar locus in Drosophila. Genetics 10: 117–147.

    PubMed  CAS  Google Scholar 

  • Sturtevant A. H., 1928, A further study of the so-called mutation at the bar locus of Drosophila. Genetics 13: 401–409.

    PubMed  CAS  Google Scholar 

  • Sutton E., 1943, A cytogenetic study of the yellow-scute region of the X chromosome in Drosophila melanogaster. Genetics 28: 210–217.

    PubMed  CAS  Google Scholar 

  • Wright S., 1941, The physiology of the gene. Physiol. Rev. 21: 487–527.

    Google Scholar 

  • Yu C. P., and Chang T. S., 1948, Further studies on the inheritance of anthocyanin pigmentation in Asiatic cotton. J. Genet. 49: 46–56.

    Article  PubMed  CAS  Google Scholar 

  • Zalokar M., 1947, Anatomie du thorax de Drosophila melanogaster. Rev. suisse Zool. 54: 17–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, E.B. (2004). Pseudoallelism and Gene Evolution. In: Lipshitz, H.D. (eds) Genes, Development and Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8981-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8981-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4746-0

  • Online ISBN: 978-1-4419-8981-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics