Skip to main content

Electron Attachment to Sulphur Hexafluoride and other Fluorine Containing Molecules Investigated using Electron Swarm Techniques

  • Chapter
Gaseous Dielectrics X
  • 617 Accesses

Abstract

The collision of electrons with molecules is one of the most fundamental of physical processes. Many mechanisms can take place, including inelastic and elastic scattering, ionization, and capture. These mechanisms are being used in a wide and expanding variety of industrial applications. A thorough understanding of each of these processes provides information which could, for example, be used to optimize electron and ion densities in plasmas to enhance critical reactions involved in many technologies and which will be essential to the development of the next generation of plasma processing plants. Such information is considered to be a priority in a report from a panel on “Database Needs for Modeling and Simulation of Plasma Processing”, for the Board of Physics and Astronomy, National Research Council, U.SA.1 Our ability to control electron interactions therefore provides exciting new opportunities that can be exploited by both the research and technological communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Database Needs for Modelling and Simulation of Plasma Processing, National Research Council, National Academy Press, Washington DC (1996).

    Google Scholar 

  2. Electron-Driven Processes: Scientific Challenges and Technological Opportunities, National Research Council, National Academy Press, Washington DC (2000).

    Google Scholar 

  3. B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658–1660 (2000).

    Article  ADS  Google Scholar 

  4. M. A. Huels, L. Sanche, I. Hahndorf, and E. Illenberger, J. Chem. Phys. 108, 1309–1312 (1998).

    Article  ADS  Google Scholar 

  5. H. Abdoul-Carime, M. A. Huels, L. Sanche, F. Bruning, and E. lIlenberger, J. Chem. Phys. 113, 2517–2521 (2000).

    Article  ADS  Google Scholar 

  6. H. Abdoul-Carime, M. A. Huels, L. Sanche, and E. lIlenberger, J. Am. Chem. Soc. 123, 5354–5355 (2001).

    Article  Google Scholar 

  7. G. Hanel, B. Gstir, S. Denifl, P. Scheier, M. Probst, B. Farizon, E. IIIenberger, and T. D. Märk, Phys. Rev. Lett. 90, 188104–1–188104–4 (2003).

    Article  ADS  Google Scholar 

  8. C L Lugez, M E Jacox, R A King, and H F Schaefer III, J. Chem. Phys. 108, 9639–9650 (1998).

    Article  ADS  Google Scholar 

  9. E R Fisher, B L Kickel, and P B Armentrout, J. Chem. Phys. 97, 4859–4870 (1992).

    Article  ADS  Google Scholar 

  10. H.-X. Wan, J. H. Moore, J. K. Olthoff; and R. J. Van Brunt, Plasma Chem. Plasma Processes 13, 1–16 (1993).

    Article  MATH  Google Scholar 

  11. I Sauers, L. G. Christophorou, and S. M Spyrou, Plasma Chem. Plasma Processes 13, 17–35 (1993).

    Article  Google Scholar 

  12. V Tarnovsky, H Deutsch, K E Martus, and K Becker, J. Chem. Phys. 109, 6596–6600 (1998).

    Article  ADS  Google Scholar 

  13. L G Christophorou, and J K Olthoff (Eds.) Proceedings of the VIII International Symposium on Gaseous Dielectrics (Plenum Press, New York, 1998).

    Google Scholar 

  14. D. Smith and P. Španěl, Ad At. Mol. And Opt. Physics 32, 307–343 (1994).

    Article  ADS  Google Scholar 

  15. J. M. Ajello and A. Chutjian, J. Chem. Phys. 71, 1079–1087 (1979).

    Article  ADS  Google Scholar 

  16. M. Fenzlaff, R. Gerhard, and E. Illenberger, J. Chem. Phys. 88, 149–155 (1988).

    Article  ADS  Google Scholar 

  17. L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry, J. Appl. Phys. 50, 6789–6796 (1979).

    Article  ADS  Google Scholar 

  18. L. G. Christophorou, E. L. Chaney, and A. A. Christodoulides, Chem. Phys. Letts. 3(6), 363–366 (1969).

    Article  ADS  Google Scholar 

  19. L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, Electron-Molecule Interactions and Their Applications (Academic Press, New York, 1984)

    Google Scholar 

  20. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Chem. Phys. 90, 4879–4891 (1989).

    Article  ADS  Google Scholar 

  21. D. H. Williamson, C. A Mayhew, W. B Knighton, and E. P. Grimsrud, J. Chem. Phys. 113, 11036–11043 (2000).

    Article  ADS  Google Scholar 

  22. W.B Knighton, T. M. Miller, E. P. Grimsrud, and A. A. Viggiano, J. Chem. Phys. 120, 211–216 (2004).

    Article  ADS  Google Scholar 

  23. G. K. Jarvis, R. A. Kennedy, and C. A. Mayhew, Int. J. Mass Spectrom. Ion Processes 205, 253–270 (2001).

    Article  Google Scholar 

  24. R. A. Kennedy and C. A. Mayhew, Int. J. Mass Spectrom. Ion Processes 206, vii–x (2001).

    Article  Google Scholar 

  25. G. K. Jarvis, C. A. Mayhew, L. Singleton, and S. Spyrou, Int. J. Mass Spectrom. Ion Processes 164, 207–223 (1997) 207.

    Article  ADS  Google Scholar 

  26. T. M. Miller, S. T. Arnold, A. A. Viggiano, and W. B. Knighton, J. Chem. Phys. 116 6021–6027 (2002).

    Article  ADS  Google Scholar 

  27. A. A. Christodoulides and L. G. Christophorou Chem. Phys. Lett. 613 533–557, 1979

    Article  ADS  Google Scholar 

  28. R. Y. Pai, L. G. Christophorou, A. A. Christodoulides. J. Chem. Phys. 70, 1169–1176 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayhew, C.A. (2004). Electron Attachment to Sulphur Hexafluoride and other Fluorine Containing Molecules Investigated using Electron Swarm Techniques. In: Christophorou, L.G., Olthoff, J.K., Vassiliou, P. (eds) Gaseous Dielectrics X. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8979-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8979-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4745-3

  • Online ISBN: 978-1-4419-8979-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics