Transport Coefficients for Electrons in CF4 in E(t)×B(t) Fields

  • S. Dujko
  • Z. M. Raspopović
  • Z. Lj. Petrović


Low pressure discharges sustained by radio-frequency (rf) electric fields, are widely used in microelectronic fabrication and manufacture of new materials1. In these applications it is desirable to generate high density, large volume nonequilibrium plasma in collision dominated regime. Most plasmas are driven by sources with frequencies ranging from several tens to several hundreds of MHz. In case of Inductively Coupled Plasmas (ICP) and magnetically enhanced plasmas, the magnetic field is present leading to spatial trapping of electrons. Investigation of electron transport and of the kinetic phenomena that may occur2, in crossed dc and rf fields is highly desirable as the basis for plasma models under circumstances that are typical for plasma processing. On the other hand, modeling of gaseous dielectrics may benefit greatly from the studies of gases for plasma etching as often the same gases are used in both applications.


Drift Velocity Inductively Couple Plasma Diffusion Tensor Transport Coefficient Electron Energy Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).Google Scholar
  2. 2.
    Z.Lj. Petrović, Z.M. Raspopović, S. Dujko and T. Makabe, in: Advances in Low Temperature Plasmas, edited by T. Makabe (Elsevier Science B.V., Amsterdam 2002), pp. 1–25.Google Scholar
  3. 3.
    H. Tanaka and O. Sueoka, in: Advances in Atomic, Molecular and Optical Physics, edited by M. Kimura and Y. Itikawa (Academic Press, San Diego 2001), vol. 44, pp. 1–32.Google Scholar
  4. 4.
    L. G. Christophorou, J.K. Olthoff and M.V.V.S. Rao, Electron interactions with CF4, J. Phys. Chem. Ref Data 25(5), 1341–1388 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    M.C. Bordage, P. Segur and A. Chouki, Determination of a set of electron impact cross sections in tetrafluoromethane consistent with experimental determination of swarm parameters, J. Appl. Phys. 80(3), 1325–1336 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    M. Hayashi, in: Swarm Studies and Inelastic Electron-Molecule Collisions, edited by L.C. Pitchford, B.V. McKoy, A. Chutjian and S. Trajmar, (Springer, New York, 1987), pp. 167.CrossRefGoogle Scholar
  7. 7.
    Y. Nakamura, in: Gaseous Electronics and Their Applications, edited by R.W. Crompton, M. Hayashi, D.E. Boyd and T. Makabe (KTK Scientific, Tokyo, 1991), pp. 178.Google Scholar
  8. 8.
    M.C. Bordage, P. Segur, L. G. Christophorou and J.K. Olthof, Boltzmann analysis of electron swarm parameters in CF4 using independently assessed electron-collision cross section, J. Appl. Phys. 86, 355–363 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Kurihara, Z.Lj. Petrović and T. Makabe, Transport coefficients and scattering cross-sections for plasma modelling in CF4-Ar mixtures: a swarm analysis, J. Phys. D: Appl. Phys. 33, 2146–2153 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    E. Shidoji, K. Ness and T. Makabe, Influence of gas pressure and magnetic field upon dc magnetron discharge, Vacuum 60, 299–306 (2001).CrossRefGoogle Scholar
  11. 11.
    T. Makabe, in: Advances in Atomic, Molecular and Optical Physics, edited by M. Kimura and Y. Itikawa, (Academic Press, San Diego, 2001) vol. 44, pp. 127–154.Google Scholar
  12. 12.
    Z.M, Raspopović, S. Sakadžić, S. Bzenić and Z.Lj. Petrović, Benchmark Calculations for Monte Carlo Simulations of Electron Transport, IEEE Trans. Plasma Sci. 27, 1241–1248 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    R.D. White, K.F. Ness and R.E. Robson, Anomalous anisotropic diffusion in a.c. electric fields,”, Aust. J. Phys. 48, no. 6, pp. 925–938 (1995).ADSGoogle Scholar
  14. 14.
    Z.R. Raspopović, S. Sakadžić, Z.Lj. Petrovic and T. Makabe, Diffusion of electrons in timedependent E(t)×B(t) fields, J. Phys. D: Appl. Phys. 33, 1–5 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Dujko
    • 1
  • Z. M. Raspopović
    • 1
  • Z. Lj. Petrović
    • 1
  1. 1.Institute of PhysicsZemunSerbia and Montenegro

Personalised recommendations