Skip to main content

Electronegative Plasma Reactor Engineering

  • Chapter
Book cover Gaseous Dielectrics X
  • 618 Accesses

Abstract

Low pressure (0.1 mtorr to 10 torr), cold (gas temperature ∼500 K), weakly ionized (degree of ionization 10−6-10−1) glow discharge plasmas are used extensively in the processing of electronic materials, especially for etching and deposition of thin films1. Such plasmas also find application in surface modification (e.g., hardening, corrosion resistance), lighting, and even environmental remediation. Figure 1 is a schematic of a plasma etch process carried out in a capacitively-coupled reactor. The case of polysilicon etching in a chlorine plasma is shown as an example. The plasma is generated by applying radio frequency power between a pair of parallel plates in a low pressure chamber (Fig. 1a). The Cl2 feedstock gas is attacked by plasma electrons to produce Cl radicals and Cl2 + ions. Radicals diffuse or are convected by gas flow towards the wafer where they adsorb on the surface. Ions accelerate in the sheath naturally occurring over the wafer, and bombard the wafer vertical to its surface (Fig. 1b). The combination of radical and ion bombardment produces SiCl4 product which desorbs and is removed by the gas flow. It is this directional ion bombardment which promotes anisotropic etching of microscopic features (Fig. 1c), whereby the film etches much faster in the vertical as compared to the horizontal direction. At the atomic level, ion bombardment produces a modified surface layer in which the reactant (Cl) is mixed within the silicon lattice (Fig. 1d) to a depth depending on the ion energy (∼ 10s of Å). The energy deposited by ions promotes the formation of products that are either sputtered away or desorb spontaneously in the gas phase. Figure 1 also demonstrates the disparity in length scales encountered in plasma processing. Wafers are now 300 mm in diameter, so the reactor scale is of the order of 10s of cm. The sheath thickness ranges from 0.1–10 mm depending on the Debye length and the voltage applied to the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood (eds.), Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, NJ (1990).

    Google Scholar 

  2. M.A. Leiberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley and Sons, New York, NY(1994).

    Google Scholar 

  3. J. Hopwood, Plasma Sources Sci. Technol. 1, 109 (1992).

    Article  ADS  Google Scholar 

  4. See papers in special issue of IEEE Trans. Plasma Science, 31(4), 2003; 27(5), 1999; 23(4) 1995; 19(2) 1991; 14 1986.

    Google Scholar 

  5. M. J. Kushner, J. Appl. Phys. 82, 5312 (1997).

    Article  ADS  Google Scholar 

  6. T. Panagopoulos, V. Midha, D. Kim and D. J. Economou, J. Appl. Phys., 91, 2687 (2002).

    Article  ADS  Google Scholar 

  7. M. Meyyappan, ed., Computational Modeling in Semiconductor Processing, Artech House, Boston, MA (1994).

    Google Scholar 

  8. P. L. G. Ventzek, R. J. Hoekstra and M. J. Kushner, J. Vac. Sci. Technol. B 12, 461 (1994).

    Article  Google Scholar 

  9. D. J. Economou, “Plasma Reactor Engineering,” in Advances in Electrochemistry and Electrochemical Eng., Vol. 6, p. 237, ed. R C. Alkire and D. M. Kolb, Wiley-VCH (1999).

    Google Scholar 

  10. D. J. Economou, J. Feldsien, and R. S. Wise in Electron Kinetics and Applications, U. Kortshagen and L. D. Tsendin (eds.), p. 367, Plenum, New York, NY (1998).

    Google Scholar 

  11. S. Samukawa and T. Mieno, Plasma Sources Sci. Technol. 5, 132 (1996); T. H. Ahn, N. Nakamura, and H. Sugai, Plasma Sources Sci. Technol. 5, 139 (1996).

    Article  ADS  Google Scholar 

  12. V. Midha and D. J. Economou, Plasma Sources Sci. Technol., 9, 256 (2000).

    Article  ADS  Google Scholar 

  13. S. K. Kanakasabapathy, L. J. Overzet, V. Midha, and D. J. Economou, Appl. Phys. Lett., 78, 173 (2001).

    Article  Google Scholar 

  14. V. Midha and D. J. Economou, J. Appl. Phys., 90, 1102 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Economou, D.J. (2004). Electronegative Plasma Reactor Engineering. In: Christophorou, L.G., Olthoff, J.K., Vassiliou, P. (eds) Gaseous Dielectrics X. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8979-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8979-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4745-3

  • Online ISBN: 978-1-4419-8979-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics