Carbonate Precipitation on Sand (α-Quartz)

  • Raj P. Singh

Abstract

Many consumer products and specialty chemicals are produced via precipitation and crystallization processes. Typically in chemical industry, precipitation/crystallization processes are involved in the purification and separation of chemicals, development of crystals of specific size and morphology, understanding and the control of unwanted scale deposits, development of coatings, filtration, formation of suspensions, and treatment of process by-products. Several hydrometallurgical processes involve precipitat ion of anions in the purification and recovery of metal compounds.

Keywords

Titanium Crystallization Magnesium Filtration Chromium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Singh, Characterization and chemistry of formation of a magnesium hydroxide type scale obtained from the tungsten process, Hydrometallurgy 62,11–21(2001).CrossRefGoogle Scholar
  2. 2.
    R. P. Singh, Processing of Ta205, powders for electronic applications, J. Electronic Materials 30, 1584–1594 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Coifen and L. Qi, A systematic examination of the morphogenisis of calcium carbonate in the presence of a double-hydrophilic block copolymer, Chem. Eur. J. 7, 106–116 (2001).CrossRefGoogle Scholar
  4. 4.
    C. Y. Tai and P. C. Chen, Nucleation, aggregation and crystal morphology of calcium carbonate, AIChE Journal 41, 68–77 (1995).CrossRefGoogle Scholar
  5. 5.
    A. P. Collier and M. J. Hounslow, Growth and aggregation rates for calcite and calcium oxalate monohydrate, AIChE Journal 45, 2298–2305 (1999).CrossRefGoogle Scholar
  6. 6.
    C. Buczynski and H. S. Chafetz, Siliciclastic grain breakage and displacement due to carbonate crystal growth: an example from Lueders Formation (Pennian) of nonh-central Texas, U.S.A., Sedimentology 34, 837–843 (1987).CrossRefGoogle Scholar
  7. 7.
    E. A. Burton and L. M. Walter, The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater, Geochim. Cosmochim. Acta 54, 797–808 (1990).CrossRefGoogle Scholar
  8. 8.
    J. C. Cowan, and D. J. Weintritt, Water Formed Scale Deposits, (Gulf Publishing Co., Houston, Texas, 1976).Google Scholar
  9. 9.
    L. Brecevic and A, E. Nielsen, Solubility of amorphous calcium carbonate, J. Crystal Growth 98, 504–510 (1989).CrossRefGoogle Scholar
  10. 10.
    T. Ogino, T Suzuki, and K. Sawada, The formation and transfonnation mechanism of calcium carbonate in water, Geochim. Cosmochim. Acta 51, 2757–2767 (1987).CrossRefGoogle Scholar
  11. 11.
    J. L Katz and K. I. Parsiegla, Calcite growth inhibition by ferrous and ferric ions, in: Mineral Scale Formation and Inhibition, edited by Z. Amjad (Plenum Press, New York, 1995), pp. 11–20.CrossRefGoogle Scholar
  12. 12.
    R. V. Davies, P. W. Carter, M. A. Kamrath, D. A. Johnson, and P. E. Reed, The use of modem methods in the development of calcium carbonate inhibitors for cooling water systems, in: Mineral Scale Formationand Inhibition, edited by Z Amjad (Plenum Press, New York, 1995), pp. 33–46.CrossRefGoogle Scholar
  13. 13.
    L. A. Perez and D. F. Zidovec, Scale control by using a new non-phosphorus environmentally friendly scale inhibitor, in: Mineral Scale Formation and Inhibition, edited by Z. Amjad (Plenum Press, New York, 1995), pp. 47–61CrossRefGoogle Scholar
  14. 14.
    M. C. Cushner, W. C Melchior, and J. L Przybylinski, Effect of iron (ii) on the performance of calcium carbonate inhibitors, Environment Treatment & Control, January 1990, pp. 49–52.Google Scholar
  15. 15.
    R. G. Asperger, Rapid high-temperature field test method for evaluation of geothermal calcium carbonate scale inhibitors, in: International Symposium on Oilfield and Geothermal Chemistry (Phoenix, Arizona, April 9–11, 1985), pp. 15–17.Google Scholar
  16. 16.
    C. Roque, Prevention of deposits in petroleum installations, in: Proceedings of 4th Middle East Corrosion Conference (Bahrain, January 11–13, 1988), pp. 71–88.Google Scholar
  17. 17.
    R. P. Singh and N. M. Abbas, Characterization of oilfield scales, in: Proceedings of the Fifth Middle East Corrosion Conference (Bahrain, October 28–30, 1991), pp. 561–569.Google Scholar
  18. 18.
    M. M. Reddy and G. H. Nancollas, The crystallization of calcium carbonate IV. The effect of magnesium, strontium and sulfate ions, J. Crystal Growth 35, 33–38 (1976).CrossRefGoogle Scholar
  19. 19.
    M. M. Reddy and K. K. Wang, Crystallization of carbonate in the presence of metal ions I, Inhibition by magnesium ion at pH 8.8 and 25 °C, J. CrystalGrowth 50, 470–480 (1980).Google Scholar
  20. 20.
    M. M. Reddy, Carbonate precipitation in Pyramid Lake, Nevada, probable control by magnesium ions, in: Mineral Scale Formation and Inhibition, edited by Z. Amjad (Plenum Press, New York, 1995), pp. 21–32CrossRefGoogle Scholar
  21. 21.
    R. P. Singh, N. M. Abbas, and S. A. Smesko, Suppressed ion chromatographic analysis of anions in environmental waters containing high salt concentrations, Journal of Chromatography A 733, 73–91(1996)CrossRefGoogle Scholar
  22. 22.
    R. P. Singh and N. M. Abbas, Suppressed ion chromatographic determination of lithium, sodium, ammonium and potassium concentrations in sub-surface brines, Journal of Chromatography A 733, 93–99 (1996)CrossRefGoogle Scholar
  23. 23.
    R. P. Singh, E. R. Pambid, P. Debayle, and N. M. Abbas, Ethylenediamine-hydrochloric acid-zinc(II) eluent for the suppressed ion chromatographic separation of strontium(II) from a large amount of calciurnt(II): application of the method to simultaneous detennination of magnesiumt(II), calcium(II) and strontium(II) in high salinity sub surface waters, Analyst (London) 116, 409–414 ( 1991)CrossRefGoogle Scholar
  24. 24.
    P. G. Wemess, C. M. Brown, L. H. Smith, and B. Finlayson, EQUIL2: A basic computer program for the calculat ion of urinary saturation, J. Urology 134, 1242–1244 (1985).Google Scholar
  25. 25.
    W. A. House and J. A. Tutton, An investigation of the nucleation of calcite, J. Crystal Growth 56, 699–710 (1982).CrossRefGoogle Scholar
  26. 26.
    C.W. Davies, Ion Association, (Butterworth, London, 1962).Google Scholar
  27. 27.
    J. L. Meyer, J. H. Bergert, and L. H. Smith, Epitaxial relationship in urolithiasis: the brushite-whewellite system, Clinical Science and Molecular Medicine 52, 143–148 (1977).Google Scholar
  28. 28.
    P. G. Koutsoukos and G. H. Nancollas, Crystal growth of calcium phosphates-epitaxial considerations. J. Crystal Growth 53, 10–19 (1981).CrossRefGoogle Scholar
  29. 29.
    P. G. Koutsoukos, M. E. Sheehan, and G. H. Nancollas, Epitaxial considerations in urinary stone formation II: The oxalate-phosphate system, J. Urology 18, 358–363 (1981).Google Scholar
  30. 30.
    L. Perez and G. H. Nancollas, The growth of calcium and strontium sulfates on barium sulfate surfaces, Scanning Electron Microscopy 2, 1437–1443 (1988).Google Scholar
  31. 31.
    W. R. Hamilton; A. R. Wooley, and A. C Bishoh, The Lo Rousse Guide to Minerals, Rocks and Fossils, (La Rousse & Co Inc., New York, 1979), p. 68.Google Scholar
  32. 32.
    J. W. McCauley and R. Roy, Controlled nucleation and crystal growth of various CaCO3 phases by the silica gel technique, Am. Mineralogist 59,947–963 (1974).Google Scholar
  33. 33.
    N. Watabe, Crystal growth of calcium carbonate in the invertebrates, in: Progress in Crystal Growth and Characterization, edited by B.R. Pamplin (Pergamon Press, New York, 1982), p. 99–107.Google Scholar
  34. 34.
    G. H. Nancollas and R. P. Singh, In vitro system to study calcium stone formation: the constant composition model, in: Contributions to Nephrology, edited by G. M. Berlyne and S. Giovannetti, (S. Karger, Basel, Switzerland, 1987), pp. 49–58.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Raj P. Singh
    • 1
  1. 1.Chemicals and Powders Research & DevelopmentOSRAM SylvaniaTowandaUSA

Personalised recommendations