Skip to main content

Abstract

Many consumer products and specialty chemicals are produced via precipitation and crystallization processes. Typically in chemical industry, precipitation/crystallization processes are involved in the purification and separation of chemicals, development of crystals of specific size and morphology, understanding and the control of unwanted scale deposits, development of coatings, filtration, formation of suspensions, and treatment of process by-products. Several hydrometallurgical processes involve precipitat ion of anions in the purification and recovery of metal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Singh, Characterization and chemistry of formation of a magnesium hydroxide type scale obtained from the tungsten process, Hydrometallurgy 62,11–21(2001).

    Article  CAS  Google Scholar 

  2. R. P. Singh, Processing of Ta205, powders for electronic applications, J. Electronic Materials 30, 1584–1594 (2001).

    Article  CAS  Google Scholar 

  3. H. Coifen and L. Qi, A systematic examination of the morphogenisis of calcium carbonate in the presence of a double-hydrophilic block copolymer, Chem. Eur. J. 7, 106–116 (2001).

    Article  Google Scholar 

  4. C. Y. Tai and P. C. Chen, Nucleation, aggregation and crystal morphology of calcium carbonate, AIChE Journal 41, 68–77 (1995).

    Article  CAS  Google Scholar 

  5. A. P. Collier and M. J. Hounslow, Growth and aggregation rates for calcite and calcium oxalate monohydrate, AIChE Journal 45, 2298–2305 (1999).

    Article  CAS  Google Scholar 

  6. C. Buczynski and H. S. Chafetz, Siliciclastic grain breakage and displacement due to carbonate crystal growth: an example from Lueders Formation (Pennian) of nonh-central Texas, U.S.A., Sedimentology 34, 837–843 (1987).

    Article  CAS  Google Scholar 

  7. E. A. Burton and L. M. Walter, The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater, Geochim. Cosmochim. Acta 54, 797–808 (1990).

    Article  CAS  Google Scholar 

  8. J. C. Cowan, and D. J. Weintritt, Water Formed Scale Deposits, (Gulf Publishing Co., Houston, Texas, 1976).

    Google Scholar 

  9. L. Brecevic and A, E. Nielsen, Solubility of amorphous calcium carbonate, J. Crystal Growth 98, 504–510 (1989).

    Article  CAS  Google Scholar 

  10. T. Ogino, T Suzuki, and K. Sawada, The formation and transfonnation mechanism of calcium carbonate in water, Geochim. Cosmochim. Acta 51, 2757–2767 (1987).

    Article  CAS  Google Scholar 

  11. J. L Katz and K. I. Parsiegla, Calcite growth inhibition by ferrous and ferric ions, in: Mineral Scale Formation and Inhibition, edited by Z. Amjad (Plenum Press, New York, 1995), pp. 11–20.

    Chapter  Google Scholar 

  12. R. V. Davies, P. W. Carter, M. A. Kamrath, D. A. Johnson, and P. E. Reed, The use of modem methods in the development of calcium carbonate inhibitors for cooling water systems, in: Mineral Scale Formationand Inhibition, edited by Z Amjad (Plenum Press, New York, 1995), pp. 33–46.

    Chapter  Google Scholar 

  13. L. A. Perez and D. F. Zidovec, Scale control by using a new non-phosphorus environmentally friendly scale inhibitor, in: Mineral Scale Formation and Inhibition, edited by Z. Amjad (Plenum Press, New York, 1995), pp. 47–61

    Chapter  Google Scholar 

  14. M. C. Cushner, W. C Melchior, and J. L Przybylinski, Effect of iron (ii) on the performance of calcium carbonate inhibitors, Environment Treatment & Control, January 1990, pp. 49–52.

    Google Scholar 

  15. R. G. Asperger, Rapid high-temperature field test method for evaluation of geothermal calcium carbonate scale inhibitors, in: International Symposium on Oilfield and Geothermal Chemistry (Phoenix, Arizona, April 9–11, 1985), pp. 15–17.

    Google Scholar 

  16. C. Roque, Prevention of deposits in petroleum installations, in: Proceedings of 4th Middle East Corrosion Conference (Bahrain, January 11–13, 1988), pp. 71–88.

    Google Scholar 

  17. R. P. Singh and N. M. Abbas, Characterization of oilfield scales, in: Proceedings of the Fifth Middle East Corrosion Conference (Bahrain, October 28–30, 1991), pp. 561–569.

    Google Scholar 

  18. M. M. Reddy and G. H. Nancollas, The crystallization of calcium carbonate IV. The effect of magnesium, strontium and sulfate ions, J. Crystal Growth 35, 33–38 (1976).

    Article  CAS  Google Scholar 

  19. M. M. Reddy and K. K. Wang, Crystallization of carbonate in the presence of metal ions I, Inhibition by magnesium ion at pH 8.8 and 25 °C, J. CrystalGrowth 50, 470–480 (1980).

    CAS  Google Scholar 

  20. M. M. Reddy, Carbonate precipitation in Pyramid Lake, Nevada, probable control by magnesium ions, in: Mineral Scale Formation and Inhibition, edited by Z. Amjad (Plenum Press, New York, 1995), pp. 21–32

    Chapter  Google Scholar 

  21. R. P. Singh, N. M. Abbas, and S. A. Smesko, Suppressed ion chromatographic analysis of anions in environmental waters containing high salt concentrations, Journal of Chromatography A 733, 73–91(1996)

    Article  CAS  Google Scholar 

  22. R. P. Singh and N. M. Abbas, Suppressed ion chromatographic determination of lithium, sodium, ammonium and potassium concentrations in sub-surface brines, Journal of Chromatography A 733, 93–99 (1996)

    Article  CAS  Google Scholar 

  23. R. P. Singh, E. R. Pambid, P. Debayle, and N. M. Abbas, Ethylenediamine-hydrochloric acid-zinc(II) eluent for the suppressed ion chromatographic separation of strontium(II) from a large amount of calciurnt(II): application of the method to simultaneous detennination of magnesiumt(II), calcium(II) and strontium(II) in high salinity sub surface waters, Analyst (London) 116, 409–414 ( 1991)

    Article  CAS  Google Scholar 

  24. P. G. Wemess, C. M. Brown, L. H. Smith, and B. Finlayson, EQUIL2: A basic computer program for the calculat ion of urinary saturation, J. Urology 134, 1242–1244 (1985).

    Google Scholar 

  25. W. A. House and J. A. Tutton, An investigation of the nucleation of calcite, J. Crystal Growth 56, 699–710 (1982).

    Article  CAS  Google Scholar 

  26. C.W. Davies, Ion Association, (Butterworth, London, 1962).

    Google Scholar 

  27. J. L. Meyer, J. H. Bergert, and L. H. Smith, Epitaxial relationship in urolithiasis: the brushite-whewellite system, Clinical Science and Molecular Medicine 52, 143–148 (1977).

    CAS  Google Scholar 

  28. P. G. Koutsoukos and G. H. Nancollas, Crystal growth of calcium phosphates-epitaxial considerations. J. Crystal Growth 53, 10–19 (1981).

    Article  CAS  Google Scholar 

  29. P. G. Koutsoukos, M. E. Sheehan, and G. H. Nancollas, Epitaxial considerations in urinary stone formation II: The oxalate-phosphate system, J. Urology 18, 358–363 (1981).

    CAS  Google Scholar 

  30. L. Perez and G. H. Nancollas, The growth of calcium and strontium sulfates on barium sulfate surfaces, Scanning Electron Microscopy 2, 1437–1443 (1988).

    CAS  Google Scholar 

  31. W. R. Hamilton; A. R. Wooley, and A. C Bishoh, The Lo Rousse Guide to Minerals, Rocks and Fossils, (La Rousse & Co Inc., New York, 1979), p. 68.

    Google Scholar 

  32. J. W. McCauley and R. Roy, Controlled nucleation and crystal growth of various CaCO3 phases by the silica gel technique, Am. Mineralogist 59,947–963 (1974).

    CAS  Google Scholar 

  33. N. Watabe, Crystal growth of calcium carbonate in the invertebrates, in: Progress in Crystal Growth and Characterization, edited by B.R. Pamplin (Pergamon Press, New York, 1982), p. 99–107.

    Google Scholar 

  34. G. H. Nancollas and R. P. Singh, In vitro system to study calcium stone formation: the constant composition model, in: Contributions to Nephrology, edited by G. M. Berlyne and S. Giovannetti, (S. Karger, Basel, Switzerland, 1987), pp. 49–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R.P. (2004). Carbonate Precipitation on Sand (α-Quartz). In: Moyer, B.A., Singh, R.P. (eds) Fundamentals and Applications of Anion Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8973-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8973-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4742-2

  • Online ISBN: 978-1-4419-8973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics