Polymer-Supported Reagents for Anionic Recognition

  • Spiro D. Alexandratos


The design and development of methods for the removal of toxic ions from water in the environment, industrial process streams, and waste storage facilities continues to be a high-priority problem. Such methods must be cost-effective and environmentally compatible. Polymer-supported reagents prepared by the immobilization of ion-selective ligands onto crosslinked polymer beads offer an important avenue for achieving these objectives.1 Additionally, such polymers have a broader applicability into sensor technology and chromatographic separations.


Distribution Coefficient Glycidyl Methacrylate Iminodiacetic Acid Cyanide Solution Anionic Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. D. Smith and S. D. Alexandratos, Solvent Extr. Ion Exch, 18, 779 (2000).CrossRefGoogle Scholar
  2. 2.
    Proceedings of the First Hanford Separation Science Workshop, PNL-SA-21775, Pacific Northwest National Laboratory, Richland, WA (1993); Scienceand Technology for Disposal of Radioactive Tank Waste, W. W. Schultz and N. J. Lombardo, eds.; Plenum Press, NY(1998).Google Scholar
  3. 3.
    D. A. Delistraty and J. Yokel, Environ. Toxicology 14, 473 (1999).CrossRefGoogle Scholar
  4. 4.
    A. M. Cookand S. J. Fritz, Water, Air, Soil Pollut. 135, 371 (2002).CrossRefGoogle Scholar
  5. 5.
    D. M. DeNicola and M.G. Stapleton, Environmental Pollution (Oxford, UK), 119, 303 (2002).CrossRefGoogle Scholar
  6. 6.
    J.-E. Yang, H.-J. Kim, and S.-H. Jun, Korean J. Soil Sci., Frert., 34, 33 (2001).Google Scholar
  7. 7.
    M. F. Azizian, P. O. Nelson, and P. Thayumanavan, Abstracts or Papers, 223rd ACS National Meeting, Orlando, FL, April 7–11, 2002, ENVR-157.Google Scholar
  8. 8.
    W. E. Motzer, Environmental Forensics, 2, 301 (2001).CrossRefGoogle Scholar
  9. 9.
    M. A. Greer, G. Goodman, R. C. Pleus, and S. E. Greer, Environmental Health Perspectives, 110, 927 (2002).CrossRefGoogle Scholar
  10. 10.
    G. D. Del Cul, W. D. Bostick, D. R. Troller, and P. E. Osborne. Sep. Sci. Technol., 28, 551 (1993).CrossRefGoogle Scholar
  11. 11.
    T. Sekine, and Y. Hasegawa, Solvent Extraction Chemistry: Fundamentals and Applications, Dekker: New York. 1977.Google Scholar
  12. 12.
    P. V. Bonnesen, T.J. Haverlock, N.L. Engle, R.A. Sachleben, and B. A. Moyer, Am. Chem. Soc. Symp. Ser., 757(Calixarenes for Separations). 26 (2000).Google Scholar
  13. 13.
    F. P. Schmidtchen and M. Berger, Chem. Rev., 97, 1609, (1997).CrossRefGoogle Scholar
  14. 14.
    M. Mitewa and P.R. Bontchev, Coord. Chem. Rev. 135, 129 (1994).CrossRefGoogle Scholar
  15. 15.
    V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, A. Poggi, and A. Taglietti, Coord. Chem. Rev. 219–221, 821 (2001).CrossRefGoogle Scholar
  16. 16.
    W. L. Sederel and G. L. De Jong, J. Appl. Polym. Sci., 17, 2835 (1973).CrossRefGoogle Scholar
  17. 17.
    H. Jacobelli, M. Bartholin, and A. Guyot, J. Appl. Polym. Sci., 23, 927 (1979).CrossRefGoogle Scholar
  18. 18.
    G. E. Boyd, F. Vaslow, and S. J. Lindenbaum, J. Phys. Chem., 71, 2214 (1967).CrossRefGoogle Scholar
  19. 19.
    P.M. Van Berkel, W. L. Driessen. J. Reedijk, D. C. Sherrington, and A. Zitsmanis, React. Funct. Polym. 27, 15 (1995).CrossRefGoogle Scholar
  20. 20.
    Y. K. Agrawal and K. V. Rao, React. Funct. Polym., 31, 225 (1996).CrossRefGoogle Scholar
  21. 21.
    T. Matsushita, N. Kubota, M. Fujiwara, and T. Shono, Chem. Lett. 657 (1984).Google Scholar
  22. 22.
    C.-C. Wang. C.-Y. Chen, and C.-Y. Chang. J. Appl. Polym. Sci., 84, 1353 (2002).CrossRefGoogle Scholar
  23. 23.
    K. Ohto, Y. Tanaka, M. Yano, T. Shinohara, E. Murakami, and K. Inoue, Solvent Extr. Ion Exch., 19, 725 (2001).CrossRefGoogle Scholar
  24. 24.
    L. G. A. van de Water, F. ten Hoonte, W. L. Driessen, J. Reedijk, and D. C. Sherrington, Inorg. Chim. Acta, 303, 77 (2000).CrossRefGoogle Scholar
  25. 25.
    C. Yi-Yong and Y. Xing-Zhong, React. Polym. 23, 165 (1994).CrossRefGoogle Scholar
  26. 26.
    P. Hainey and D. C. Sherrington, React. Funct. Polym., 43, 195 (2000).CrossRefGoogle Scholar
  27. 27.
    V. Gutanu, C. Luca, C. Turta, V. Neagu, V. Sofranschi, M. Cherdivarenco, and B. C. Simionescu, J. Appl. Poly. Sci., 59, 1371 (1996).CrossRefGoogle Scholar
  28. 28.
    B. K. Leung and M. J. Hudson, Solvent Extr. Ion Exch., 10, 173 (1992).CrossRefGoogle Scholar
  29. 29.
    E. Guibal, C. Milot, and J. M. Tobin, Ind. Eng. Chem. Res., 37, 1454 (1998).CrossRefGoogle Scholar
  30. 30.
    A. Sengupta and D. Zhao, U.S. Patent 6, 136, 199.Google Scholar
  31. 31.
    J. Kennedy, E. S. Lane, and B. K. Robinson, J. Appl. Chem., 8, 459 (1958).CrossRefGoogle Scholar
  32. 32.
    H. Egawa, K. Yamabe, and A. Jyo, J. Appl. Polym. Sci., 52, 1153 (1994).CrossRefGoogle Scholar
  33. 33.
    S. D. Alexandratos, M. A. Stand, D. R. Quillen, and A. J. Walder, Macromolecules, 18, 829 (1985).CrossRefGoogle Scholar
  34. 34.
    S. D. Alexandratos, D. W. Crick, and D. R. Quillen, Ind. Eng. Chem. Res., 29, 772 (1991).CrossRefGoogle Scholar
  35. 35.
    S. D. Alexandratos, D. R. Quillen, and M. E. Bates, Macromolecules, 20, 1191 (1987).CrossRefGoogle Scholar
  36. 36.
    M. Stem, M. Fridkin, and A. Warshawsky, J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 1469; L.T. Scott. J. Rebek, L. Ovsyanko, and C. L. Sims. J. Am. Chem. Soc., 99, 625 (1977).CrossRefGoogle Scholar
  37. 37.
    D.W. Crick and S. D. Alexandratos, Magn. Reson.Chem., 32 (Spec. Issue), S40 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Spiro D. Alexandratos
    • 1
  1. 1.Department of ChemistryHunter College of the City University of New YorkNew YorkUSA

Personalised recommendations