Electron Interactions with CHF3, CF3I, and c-C4F8

  • Loucas G. Christophorou
  • James K. Olthoff
Chapter
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

In this chapter we assess and synthesize the available information on the cross sections and the rate coefficients for collisional interactions of trifluoromethane (CHF3) [1], trifluoroiodomethane (CF3I) [2], and perfluorocyclobutane (c-C4F8) [3] with low-energy electrons. Definitions of the symbols we use to describe the various collision processes for these three gases are as discussed in Ch. 1 (Table 1.3). All three gases are used in manufacturing semiconductor devices and have a number of other important applications.

Keywords

Microwave Ozone Fluorine Photodissociation Reso 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data 26, 1 (1997).ADSGoogle Scholar
  2. [2]
    L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 29, 553 (2000).ADSGoogle Scholar
  3. [3]
    L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 30, 449 (2001).ADSGoogle Scholar
  4. [4]
    Intergovernmental Panel on Climate Change (IPCC)The 1994 Report of the Scientific Assessment Working Group of IPCCp. 28.Google Scholar
  5. [5]
    L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999).ADSGoogle Scholar
  6. [6]
    M. J. Kushner and D. Zhang, J. Appl. Phys. 88, 3231 (2000).ADSGoogle Scholar
  7. [7]
    M. C. Bordage and P. Ségur, inProceedings of the XXV International Con-ference on Phenomena in Ionized GasesT. Goto (Ed.), Nagoya, Japan, July 2001, Vol. 3, p. 253.Google Scholar
  8. [8]
    W. L. Morgan, C. Winstead, and V. McKoy, J. Appl. Phys. 90, 2009 (2001).ADSGoogle Scholar
  9. [9]
    C. R. Brundle, M. B. Robin, and H. Basch, J. Chem. Phys. 53, 2196 (1970).ADSGoogle Scholar
  10. [10]
    C. Y. R. Wu, L. C. Lee, and D. L. Judge, J. Chem. Phys. 71, 5221 (1979).ADSGoogle Scholar
  11. [11]
    M. B. RobinHigher Excited States of Polyatomic MoleculesAcademic, New York, 1974, Vol. I, pp. 178–191.Google Scholar
  12. [12]
    J. F. Ying and K. T. Leung, Phys. Rev. A 53, 1476 (1996).ADSGoogle Scholar
  13. [13]
    R. D. Nelson, D. R. Lide, and A. A. MaryottSelected Values of Electric Dipole Moments for Molecules in the Gas PhaseNSRDS-NBS 10, U.S. GPO, Washington, DC, 1967.Google Scholar
  14. [14]
    W. L. Meerts and I. Ozier, J. Chem. Phys. 75, 596 (1981).ADSGoogle Scholar
  15. [15]
    H. Sutter and R. H. Cole, J. Chem. Phys. 52, 132 (1970).ADSGoogle Scholar
  16. [16]
    G. Cazzoli, L. Cludi, G. Cotti, L. Dore, C. D. Esposti, M. Bellini, and P. de Natale, J. Mol. Spectrosc. 163, 521 (1994).ADSGoogle Scholar
  17. [17]
    J. A. Beran and L. Kevan, J. Phys. Chem. 73, 3860 (1969).Google Scholar
  18. [18]
    R. Kobayashi, R. D. Amos, H. Koch, and P. JØrgensen, Chem. Phys. Lett. 253, 373 (1996).ADSGoogle Scholar
  19. [19]
    W. R. Harshbarger, M. B. Robin, and E. N. Lassettre, J. Electron Spectrosc. Relat. Phenom. 1, 319 (1972/1973).Google Scholar
  20. [20]
    C. Larrieu, M. Chaillet, and A. Dargelos, J. Chem. Phys. 94, 1327 (1991).ADSGoogle Scholar
  21. [21]
    P. Sauvageau, R. Gilbert, P. P. Berlow, and C. Sandorfy, J. Chem. Phys. 59, 762 (1973).ADSGoogle Scholar
  22. [22]
    S. Stokes and A. B. F. Duncan, J. Am. Chem. Soc. 80, 6177 (1958).Google Scholar
  23. [23]
    F. C.-Y. Wang and G. E. Leroi, Ann. Isr. Phys. Soc. 6, 210 (1983).Google Scholar
  24. [24]
    B. P. Pullen, T. A. Carlson, W. E. Moddeman, G. K. Schweitzer, W. E. Bull, and F. A. Grimm, J. Chem. Phys. 53, 768 (1970).ADSGoogle Scholar
  25. [25]
    G. Bieri, L. Asbrink, and W. von Niessen, J. Electron Spectrosc. Relat. Phe-nom. 23, 281 (1981).Google Scholar
  26. [26]
    A. Campargue and F. Stoeckel, J. Chem. Phys. 85, 1220 (1986).ADSGoogle Scholar
  27. [27]
    K. Kim and C. W. Park, J. Mol. Struct. 161, 297 (1987.ADSGoogle Scholar
  28. [28]
    B. Galabov, T. Dudev, and W. J. Orville-Thomas, J. Mol. Struct. 145, 1(1986).Google Scholar
  29. [29]
    J. E. Sanabia, G. D. Cooper, J. A. Tosseil, and J. H. Moore, J. Chem. Phys. 108, 389 (1998).ADSGoogle Scholar
  30. [30]
    O. Sueoka, H. Takaki, A. Hamada, H. Sato, and M. Kimura, Chem. Phys. Lett. 288, 124 (1998).ADSGoogle Scholar
  31. [31]
    I. Iga, P. R. Pinto, and M. G. P. Homem, inProceedings of the Interna-tional Symposium on Electron-Molecule Collisions and SwarmsY. Hatano, H. Tanaka, and N. Kouchi (Eds.), Tokyo, Japan, July 1999, p. 123.Google Scholar
  32. [32]
    H. Nishimura, K. Okuda, and Y. Nakamura, inProceedings of the Interna-tional Symposium on Electron-Molecule Collisions and SwarmsI. Fabrikant, G. Gallup, and P. Burrow (Eds.), Lincoln, NE, July 2001, p. 105.Google Scholar
  33. [33]
    S. Altshuler, Phys. Rev. 107, 114 (1957).ADSMATHGoogle Scholar
  34. [34]
    L. G. Christophorou and A. A. Christodoulides, J. Phys. B 2, 71 (1969).ADSGoogle Scholar
  35. [35]
    L. G. ChristophorouAtomic and Molecular Radiation PhysicsWiley- Interscience, New York, 1971, Ch. 4.Google Scholar
  36. [36]
    L. G. Christophorou, D. R. James, and R. A. Mathis, J. Phys. D 14, 675 (1981).ADSGoogle Scholar
  37. [37]
    J. A. LaVerne and A. Mozumder, Radiat. Res. 96, 219 (1983).Google Scholar
  38. [38]
    H. Tanaka, T. Masai, M. Kimura, T. Nishimura, and Y. Itikawa, Phys. Rev. A 56, R3338 (1997).ADSGoogle Scholar
  39. [39]
    H. Tanaka, private communication, 1998.Google Scholar
  40. [40]
    M. T. do N. Varella, C. Winstead, V. McKoy, M. Kitajima, and H. Tanaka, Phys. Rev. A 65, 022702 (2002).Google Scholar
  41. [41]
    R. B. Diniz, M. A. P. Lima, and F. J. da Paixão, J. Phys. B 32, L539 (1999).ADSGoogle Scholar
  42. [42]
    A. P. P. Natalense, M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A 59, 879 (1999).ADSGoogle Scholar
  43. [43]
    H. U. Poll and J. Meichsner, Contrib. Plasma Phys. 27, 359 (1987).Google Scholar
  44. [44]
    M. Goto, K. Nakamura, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 33, 3602 (1994).ADSGoogle Scholar
  45. [45]
    C. Q. Jiao, R. Nagpal, and P. D. Haaland, Chem. Phys. Lett. 269, 117 (1997).ADSGoogle Scholar
  46. [46]
    C. Q. Jiao, private communication, January 1999.Google Scholar
  47. [47]
    I. Iga, I. P. Sanches, S. K. Srivastava, and M. Mangan, Int. J. Mass Spectrom. 208, 159 (2001).Google Scholar
  48. [48]
    I. Torres, R. Martinez, and F. Castaíño, J. Phys. B 35, 2423 (2002).ADSGoogle Scholar
  49. [49]
    E. Krishnakumar and S. K. Srivastava, J. Phys. B 21, 1055 (1988).ADSGoogle Scholar
  50. [50]
    J. A. Beran and L. Kevan, J. Phys. Chem. 73, 3866 (1969).Google Scholar
  51. [51]
    Y.-K. Kim, W. Hwang, M. A. Ali, and M. E. Rudd, inProceedings of the Twentieth International Conference on the Physics of Electronic and Atomic CollisionsVienna, Austria, 1997, Vol. II, p. WE103.Google Scholar
  52. [52]
    Y.-K. Kim, private communication, 1996.Google Scholar
  53. [53]
    Y.-K. Kim and M. E. Rudd, Phys. Rev. A 50, 3954 (1994).ADSGoogle Scholar
  54. [54]
    W. Hwang, Y.-K. Kim, and M. E. Rudd, J. Chem. Phys. 104, 2956 (1996).ADSGoogle Scholar
  55. [55]
    D. L. Hobrock and R. W. Kiser, J. Phys. Chem. 68, 575 (1964)Google Scholar
  56. [56]
    J. B. Farmer, I. H. S. Henderson, F. P. Lossing, and D. G. H. Marsden, J. Chem. Phys. 24, 348 (1956).ADSGoogle Scholar
  57. [57]
    C. Lifshitz and F. A. Long, J. Phys. Chem. 69, 3731 (1965).Google Scholar
  58. [58]
    J. S. Kim, M. V. V. S. Rao, M. A. Cappelli, S. P. Sharma, and M. Meyyappan, Plasma Sources Sci. Technol. 10, 191 (2001).Google Scholar
  59. [59]
    B. L. Peko, R. L. Champion, M. V. V. S. Rao, and J. K. Olthoff, J. Appl. Phys. 92, 1657 (2002).ADSGoogle Scholar
  60. [60]
    J. de Urquijo, E. Basurto, C. Cisneros, and I. Alvarez, inProceedings of the XXIVth International Conference on Phenomena in Ionized Gases, Con-tributed PapersP. Pisarczyk, T. Pisarczyk, and J. Wołowski (Eds.), Warsaw, Poland, July 1999, Vol. I, p. 73.Google Scholar
  61. [61]
    J. de Urquijo, I. Alvarez, and C. Cisneros, Phys. Rev. E 60, 4990 (1999).ADSGoogle Scholar
  62. [62]
    L. G. Christophorou, D. R. James, and R. Y. Pai, in Applied Atomic Collision Physics, Academic, New York, Vol. 5, 1982, p. 87.Google Scholar
  63. [63]
    L. G. Christophorou, D. R. James, I. Sauers, M. O. Pace, R. Y. Pai, and A. Fatheddin, inGaseous Dielectrics IIIPergamon, New York, 1982, p. 151.Google Scholar
  64. [64]
    EPRI Report EPRI El–2620, September 1982.Google Scholar
  65. [65]
    R. S. Nema, S. V. Kulkarni, and E. Husain, IEEE Trans. Electr. Insul. EI-17, 434 (1982).Google Scholar
  66. [66]
    J. L. Hernández-Ávila, E. Basurto, and J. de Urquijo, inProceedings of the XXVth International Conference on Phenomena in Ionized GasesT. Goto (Ed.), Nagoya, Japan, July 2001, Vol. 3, p. 215.Google Scholar
  67. [67]
    H. Sugai, H. Toyoda, T. Nakano, and M. Goto, Contrib. Plasma Phys. 35, 415 (1995).ADSGoogle Scholar
  68. [68]
    V. Tarnovsky and K. Becker, J. Chem. Phys. 98, 7868 (1993).ADSGoogle Scholar
  69. [69]
    V. Tarnovsky, P. Kurunczi, D. Rogozhnikov, and K. Becker, Int. J. Mass Spectrom. Ion Processes 128, 181 (1993).ADSGoogle Scholar
  70. [70]
    S. Motlagh and J. H. Moore, J. Chem. Phys. 109, 432 (1998).ADSGoogle Scholar
  71. [71]
    H. F. Winters and M. Inokuti, Phys. Rev. A 25, 1420 (1982).ADSGoogle Scholar
  72. [72]
    R. M. Reese, V. H. Dibeler, and F. L. Mohler, J. Res. Natl. Bur. Stand. 57, 367 (1956).Google Scholar
  73. [73]
    T. G. Lee, J. Phys. Chem. 67, 360 (1963).Google Scholar
  74. [74]
    R. P. Blaunstein and L. G. Christophorou, J. Chem. Phys. 49, 1526 (1968).ADSGoogle Scholar
  75. [75]
    K. A. G. MacNeil and J. C. J. Thynne, Int. J. Mass Spectrom. Ion Phys. 2, 1 (1969).Google Scholar
  76. [76]
    R. W. Fessenden and K. M. Bansal, J. Chem. Phys. 53, 3468 (1970).ADSGoogle Scholar
  77. [77]
    F. J. Davis, R. N. Compton, and D. R. Nelson, J. Chem. Phys. 59, 2324 (1973).ADSGoogle Scholar
  78. [78]
    A. A. Christodoulides, R. Schumacher, and R. N. Schindler, Int. J. Chem. Kinet. 10, 1215 (1978).Google Scholar
  79. [79]
    L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, inElectron- Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, New York, 1984, Vol. 1, Ch. 6.Google Scholar
  80. [80]
    L. G. Christophorou, Environ. Health Perspectives 36, 3 (1980).Google Scholar
  81. [81]
    H.-U. Scheunemann, M. Heni, E. Illenberger, and H. Baumgartel, Ber. Bun-senges. Phys. Chem. 86, 321 (1982).Google Scholar
  82. [82]
    A. Modelli, F. Scagnolari, G. Distefano, D. Jones, and M. Guerra, J. Chem. Phys. 96, 2061 (1992).ADSGoogle Scholar
  83. [83]
    M. Haverlag, A. Kono, D. Passchier, G. M. W. Kroesen, W. J. Goedheer, and F. J. de Hoog, J. Appl. Phys. 70, 3472 (1991).ADSGoogle Scholar
  84. [84]
    T. O. Tiernan, C. Chang, and C. C. Cheng, Environ. Health Perspectives 36, 47 (1980).Google Scholar
  85. [85]
    Y. Wang, L. G. Christophorou, J. K. Olthoff, and J. K. Verbrugge, inGaseous Dielectrics VIIIL. G. Christophorou and J. K. Olthoff (Eds.), Plenum, New York, 1998, p. 39.Google Scholar
  86. [86]
    Y. Wang, L. G. Christophorou, J. K. Olthoff, and J. K. Verbrugge, Chem. Phys. Lett. 304, 303 (1999).ADSGoogle Scholar
  87. [87]
    A. Rosa and I. Szamrej, J. Phys. Chem. A 104, 67 (2000).Google Scholar
  88. [88]
    G. K. Jarvis, C. A. Mayhew, L. Singleton, and S. M. Spyrou, Int. J. Mass Spectrom. Ion Processes 164, 207 (1997).ADSGoogle Scholar
  89. [89]
    J. D. Clark, B. W. Wright, J. D. Wrbanek, and A. Garscadden, inGaseous Dielectrics VIIIL. G. Christophorou and J. K. Olthoff (Eds.), Plenum, New York, 1998, p. 23.Google Scholar
  90. [90]
    M. Mitani and Y. Nakamura, inProceedings of the XXVth International Con-ference on Phenomena in Ionized GasesT. Goto (Ed.), July 2001, Nagoya, Jpn., Vol. 3., p. 281.Google Scholar
  91. [91]
    H. A. Van Sprang, H. H. Brongersma, and F. J. De Heer, Chem. Phys. 35, 51 (1978).Google Scholar
  92. [92]
    J. F. M. Aarts, Chem. Phys. 95, 443 (1985).ADSGoogle Scholar
  93. [93]
    J. C. Creasey, I. R. Lambert, R. P. Tuckett, and A. Hopkirk, Molec. Phys. 71, 1355 (1990).ADSGoogle Scholar
  94. [94]
    L. C. Lee, J. C. Han, C. Ye, and M. Suto, J. Chem. Phys. 92, 133 (1990).ADSGoogle Scholar
  95. [95]
    S. Wang and J. W. McConkey, Can. J. Phys. 67, 694 (1989).ADSGoogle Scholar
  96. [96]
    N. P. Danilevskii, I. Y. Rapp, V. T. Koppe, and A. G. Koval, Opt. Spectr. 60, 441 (1986).ADSGoogle Scholar
  97. [97]
    O. Keller, C. Mang, M. Nikola, and G. Schulz, Eur. Phys. J. D 4, 309 (1998).ADSGoogle Scholar
  98. [98]
    M. Suto and N. Washida, J. Chem. Phys. 78, 1007 (1983).ADSGoogle Scholar
  99. [99]
    M. Suto and N. Washida, J. Chem. Phys. 78, 1012 (1983).ADSGoogle Scholar
  100. [100]
    M. Suto, N. Washida, H. Akimoto, and M. Nakamura, J. Chem Phys. 78, 1019 (1983).ADSGoogle Scholar
  101. [101]
    M. Suto and L. C. Lee, J. Chem. Phys. 79, 1127 (1983).ADSGoogle Scholar
  102. [102]
    H. Deutsch, T. D. Märk, V. Tarnovsky, K. Becker, C. Cornelissen, L. Cespiva, and V. Bonacic-Koutecky, Int. J. Mass Spectrom. Ion Processes 137, 77 (1994).ADSGoogle Scholar
  103. [103]
    K. Takahashi, M. Hori, K. Maruyama, S. Kishimoto, and T. Goto, Jpn. J. Appl. Phys. 32, L694 (1993).ADSGoogle Scholar
  104. [104]
    K. Takahashi, M. Hori, and T. Goto, Jpn. J. Appl. Phys. 33, 4745 (1994).ADSGoogle Scholar
  105. [105]
    K. Maruyama, K. Ohkouchi, Y. Ohtsu, and T. Goto, Jpn. J. Appl. Phys. 33, 4298 (1994).ADSGoogle Scholar
  106. [106]
    K. Takahashi, M. Hori, S. Kishimoto, and T. Goto, Jpn. J. Appl. Phys. 33, 4181(1994).Google Scholar
  107. [107]
    S. M. Karecki, L. C. Pruette, and L. R. Reif, Mat. Res. Soc. Symp. Proc. 447, 67 (1997).Google Scholar
  108. [108]
    S. M. Karecki, L. C. Pruette, and L. R. Reif, J. Vac. Sci. Technol. A 16, 755 (1998).ADSGoogle Scholar
  109. [109]
    R. A. Levy, V. B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, A. Misra, S. Kesari, D. Rufin, J. Sees, and L. Hall, J. Mater. Res. 13, 2643 (1998).ADSGoogle Scholar
  110. [110]
    F. Fracassi and R. D’Agostino, J. Vac. Sci. Technol. B 16, 1867 (1998).Google Scholar
  111. [111]
    S. Samukawa and K. Tsuda, Jpn. J. Appl. Phys. 37, L1095 (1998).ADSGoogle Scholar
  112. [112]
    S. Samukawa and T. Mukai, inProceedings of the International Symposium on Electron-Molecule Collisions and SwarmsY. Hatano, H. Tanaka, and N. Kouchi (Eds.), Tokyo, Japan, July 1999, p. 76.Google Scholar
  113. [113]
    S. Solomon, J. B. Burkholder, A. R. Ravishankara, and R. R. Garcia, J. Geophys. Res. D: Atmos. 99, 20929 (1994).ADSGoogle Scholar
  114. [114]
    Climate Change 1995; The Science of Climate Change(Published for the Intergovernmental Panel on Climate Change), J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (Eds.), Cambridge University Press, Cambridge, U. K., 1996, p. 93.Google Scholar
  115. [115]
    O. V. Rattigan, D. E. Shallcross, and R. A. Cox, J. Chem. Soc. Faraday Trans. 93, 2839 (1997).Google Scholar
  116. [116]
    Climate Change 1995; The Science of Climate Change(Published for the Intergovernmental Panel on Climate Change), J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (Eds.), Cambridge University Press, Cambridge, U. K., 1996, p. 121.Google Scholar
  117. [117]
    A. L. McCleilanTables of Experimental Dipole MomentsW. H. Freeman and Company, San Francisco, 1963, p. 36.Google Scholar
  118. [118]
    T. Shimanouchi, J. Phys. Chem. Ref. Data 3, 269 (1974).Google Scholar
  119. [119]
    H. Bürger, K. Burczyk, H. Hollenstein, and M. Quack, Mol. Phys. 55, 255 (1985).ADSGoogle Scholar
  120. [120]
    S. Roszak, W. S. Koski, J. J. Kaufman, and K. Balasubramanian, J. Chem. Phys. 106, 7709 (1997).ADSGoogle Scholar
  121. [121]
    C. B. Leffert, Ph.D. dissertation, Wayne State University, 1974; as quoted in Ref. [122].Google Scholar
  122. [122]
    S. Y. Tang, B. P. Mathur, E. W. Rothe, and G. P. Reck, J. Chem. Phys. 64, 1270 (1976).ADSGoogle Scholar
  123. [123]
    R. N. Compton, P. W. Reinhardt, and C. D. Cooper, J. Chem. Phys. 68, 4360 (1978).ADSGoogle Scholar
  124. [124]
    P. E. McNamee, K. Lacman, and D. R. Herschbach, Faraday Discuss. Chem. Soc. 55, 318 (1973).Google Scholar
  125. [125]
    J. Marriott and J. D. Craggs, J. Electronics 1, 405 (1956).Google Scholar
  126. [126]
    C. A. Goy, A. Lord, and H. O. Pritchard, J. Phys. Chem. 71, 1086 (1967).Google Scholar
  127. [127]
    P. Felder, Chem. Phys. 143, 141 (1990).ADSGoogle Scholar
  128. [128]
    H. J. M. Bowen, Trans. Faraday Soc. 50, 444 (1954).Google Scholar
  129. [129]
    J. Sheridan and W. Gordy, J. Chem. Phys. 20, 591 (1952).ADSGoogle Scholar
  130. [130]
    C.-H. Wong and V. Schomaker, J. Chem. Phys. 28, 1010 (1958).ADSGoogle Scholar
  131. [131]
    A. P. Cox, G. Duxbury, J. A. Hardy, and Y. Kawashima, J. Chem. Soc. Faraday 2 76, 339 (1980).Google Scholar
  132. [132]
    V. H. Dibeler, R. M. Reese, and F. L. Mohler, J. Res. Natl. Bur. Stand. 57, 113 (1956).Google Scholar
  133. [133]
    M. Heni and E. Illenberger, Chem. Phys. Lett. 131, 314 (1986).ADSGoogle Scholar
  134. [134]
    T. Oster, O. Ingólfsson, M. Meinke, T. Jaffke, and E. Illenberger, J. Chem. Phys. 99, 5141 (1993).ADSGoogle Scholar
  135. [135]
    Y. Le Coat, R. Azria, M. Tronc, O. Ingólfsson, and E. Illenberger, Chem. Phys. Lett. 296, 208 (1998).Google Scholar
  136. [136]
    T. Underwood-Lemons, T. J. Gergel, and J. H. Moore, J. Chem. Phys. 102, 119 (1995).ADSGoogle Scholar
  137. [137]
    I. S. Buchel’nikova, J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 1119 (1958) [So-viet Physics JETP 8, 783 (1959)].Google Scholar
  138. [138]
    T. Underwood-Lemons, D. C. Winkler, J. A. Tossell, and J. H. Moore, J. Chem. Phys. 100, 9117 (1994).ADSGoogle Scholar
  139. [139]
    I. Hahndorf and E. Illenberger, Int. J. Mass Spectrom. Ion Processes 167/168, 87 (1997).Google Scholar
  140. [140]
    M. Okamoto, M. Hoshino, Y. Sakamoto, S. Watanabe, M. Kitajima, H. Tanaka, and M. Kimura, inProceedings of the International Symposium on Electron-Molecule Collisions and SwarmsY. Hatano, H. Tanaka, and N. Kouchi (Eds.), Tokyo, Japan, July 1999, p. 191.Google Scholar
  141. [141]
    M. Kitajima, M. Okamoto, H. Tanaka, and S. Samukawa, (manuscript com-municated to the authors by Professor H. Tanaka [142]).Google Scholar
  142. [142]
    H. Tanaka, private communication, January 2000.Google Scholar
  143. [143]
    M. Kitajima, M. Okamoto, K. Sunohara, H. Tanaka, H. Cho, S. Samukawa, S. Eden, and N. J. Mason, J. Phys. B 35, 3257 (2002).ADSGoogle Scholar
  144. [144]
    L. Brouwer and J. Troe, Chem. Phys. Lett. 82, 1 (1981).ADSGoogle Scholar
  145. [145]
    A. Fahr, A. K. Nayak, and R. E. Huie, Chem. Phys. 199, 275 (1994).Google Scholar
  146. [146]
    M. B. RobinHigher Excited States of Polyatomic MoleculesAcademic, New York, Vol. I, 1974.Google Scholar
  147. [147]
    G. HerzbergMolecular Spectra and Molecular Structure III: Electronic Spec-tra and Electronic Structure of Polyatomic MoleculesD. Van Nostrand, Princeton, NJ, 1966, p. 532.Google Scholar
  148. [148]
    S. S. Kumaran, M.-C. Su, K. P. Lim, and J. V. Michael, Chem. Phys. Lett. 243, 59 (1995).Google Scholar
  149. [149]
    C. J. Noutary, J. Res. Natl. Bur. Stand. 72 A, 479 (1969).Google Scholar
  150. [150]
    S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data 17, 60 (1988).Google Scholar
  151. [151]
    I. Novak, as quoted in Ref. [152].Google Scholar
  152. [152]
    L. R. Thorne and J. L. Beauchamp, J. Chem. Phys. 74, 5100 (1981).ADSGoogle Scholar
  153. [153]
    D. W. Berman, J. L. Beauchamp, and L. R. Thorne, Int. J. Mass Spectrom. Ion Phys. 39, 47 (1981).Google Scholar
  154. [154]
    T. Cvitaš, H. Güsten, L. Klasinc, I. Novadj, and H. Vančik, Z. Naturforsch. 33a, 1528 (1978).Google Scholar
  155. [155]
    M. B. RobinHigher Excited States of Polyatomic MoleculesAcademic, Or-lando, Florida, Vol. III, 1985, p. 27.Google Scholar
  156. [156]
    R. A. A. Boschi and D. R. Salahub, Can. J. Chem. 52, 1217 (1974).Google Scholar
  157. [157]
    K. B. Riehl, Ph.D. dissertation, Air Force University, 1992; Air Force Tech-nical Report No. AFIT/DS/ENP/92–3, December 1992.Google Scholar
  158. [158]
    I. Powis, O. Dutuit, M. Richard-Viard, and P. M. Guyon, J. Chem. Phys. 92, 1643 (1990).ADSGoogle Scholar
  159. [159]
    M. K. Kawada, O. Sueoka, and M. Kimura, Chem. Phys. Lett. 330, 34 (2000).ADSGoogle Scholar
  160. [160]
    M. Kimura, private communication, June 2000.Google Scholar
  161. [161]
    H. Jiao, private communication, December 1999.Google Scholar
  162. [162]
    C. Q. Jiao, B. Ganguly, C. A. DeJoseph, Jr., A. Garscadden, Int. J. Mass Spectrom. 208, 127 (2001).Google Scholar
  163. [163]
    R. C. Wetzel, F. A. Baiocchi, T. R. Hayes, and R. S. Freund, Phys. Rev. A 35, 559 (1987).ADSGoogle Scholar
  164. [164]
    S. R. Heller and G. W. A. Milne (Eds.)EPA/NIH Mass Spectra Data BaseU.S.A., GPO, Washington, 1978.Google Scholar
  165. [165]
    Z.-J. Sun, A. L. Schwaner, and J. M. White, Chem. Phys. Lett. 219, 118 (1994).ADSGoogle Scholar
  166. [166]
    O. Ingólfsson and E. Illenberger, Int. J. Mass Spectrom. Ion Processes 155, 1 (1996).ADSGoogle Scholar
  167. [167]
    H. Shimamori and Y. Nakatani, Chem. Phys. Lett. 150, 109 (1988).ADSGoogle Scholar
  168. [168]
    H. Shimamori, Y. Tatsumi, Y. Ogawa, and T. Sunagawa, J. Chem. Phys. 97, 6335 (1992).ADSGoogle Scholar
  169. [169]
    R. G. Levy, S. J. Burns, and D. L. McFadden, Chem. Phys. Lett. 231, 132 (1994).ADSGoogle Scholar
  170. [170]
    T. Sunagawa and H. Shimamori, inProceedings of the International Sympo-sium on Electron-Molecule Collisions and SwarmsY. Hatano, H. Tanaka, and N. Kouchi (Eds.), Tokyo, Japan, July 1999, p. 181.Google Scholar
  171. [171]
    S. H. Alajajian, K.-F. Man, and A. Chutjian, J. Chem. Phys. 94, 3629 (1991).ADSGoogle Scholar
  172. [172]
    X. Ling, M. A. Durham, A. Kalamarides, R. W. Marawar, B. G. Lindsay, K. A. Smith, and F. B. Dunning, J. Chem. Phys. 93, 8669 (1990).ADSGoogle Scholar
  173. [173]
    Z. Zheng, X. Ling, K. A. Smith, and F. B. Dunning, J. Chem. Phys. 92, 285 (1990).ADSGoogle Scholar
  174. [174]
    M. Suh, W. Sung, S.-U. Heo, and H. J. Hwang, J. Phys. Chem. A 103, 8365 (1999).Google Scholar
  175. [175]
    L. G. Christophorou and J. K. Olthoff, Adv. At. Mol. Opt. Phys. 44, 155 (2000).Google Scholar
  176. [176]
    J. H. Moore, private communication, June 2000.Google Scholar
  177. [177]
    L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 29, 267 (2000).ADSGoogle Scholar
  178. [178]
    B. G. Zollars, C. Higgs, F. Lu, C. W. Walter, L. G. Gray, K. A. Smith, F. B. Dunning, and R. F. Stebbings, Phys. Rev. A 32, 3330 (1985).ADSGoogle Scholar
  179. [179]
    X. Ling, B. G. Lindsay, K. A. Smith, and F. B. Dunning, Phys. Rev. A 45, 242 (1992).ADSGoogle Scholar
  180. [180]
    F. B. Dunning, J. Phys. B 28, 1645 (1995).ADSGoogle Scholar
  181. [181]
    J. Sherwell, R. Cooper, D. C. Nguyen, and S. P. Mezyk, Aust. J. Chem. 41, 1491 (1988).Google Scholar
  182. [182]
    R. Martínez, J. Terrón, I. Merelas, M. N. S. Rayo, and F. Castaño, J. Phys. B 31, 1793 (1998).ADSGoogle Scholar
  183. [183]
    J. W. Coburn, Plasma Chem. and Plasma Process. 2, 1 (1982).ADSGoogle Scholar
  184. [184]
    M. Miyamura, O. Tsukakoshi, and S. Komiya, J. Vac. Sci. Technol. 20, 986 (1982).ADSGoogle Scholar
  185. [185]
    K. Nojiri and E. Iguchi, J. Vac. Sci. Technol. B 13, 1451 (1995).Google Scholar
  186. [186]
    T. Maruyama, N. Fujiwara, K. Shiozawa, and M. Yoneda, J. Vac. Sci. Tech-nol. A 13, 810 (1995).ADSGoogle Scholar
  187. [187]
    H. Kimura, K. Shiozawa, K. Kawai, H. Miyatake, and M. Yoneda, Jpn. J. Appl. Phys. 34, 2114 (1995).ADSGoogle Scholar
  188. [188]
    K. Miyata, M. Hori, and T. Goto, Jpn. J. Appl. Phys., Part 1 36, 5340 (1997).ADSGoogle Scholar
  189. [189]
    J. N. Butler, J. Amer. Chem. Soc. 84, 1393 (1962).Google Scholar
  190. [190]
    J. M. Simmie, W. J. Quiring, and E. Tschuikow-Roux, J. Phys. Chem. 73, 3830 (1969).Google Scholar
  191. [191]
    J. M. Preses, R. E. Weston, and G. W. Flynn, Chem. Phys. Lett. 46, 69 (1977).ADSGoogle Scholar
  192. [192]
    M. Quack and G. Seyfang, Ber. Bunsenges. Phys. Chem. 86, 504 (1982).Google Scholar
  193. [193]
    E. Pochon, R. E. Weston, and G. W. Flynn, J. Phys. Chem. 89, 86 (1985).Google Scholar
  194. [194]
    A. Yokoyama, K. Yokoyama, and G. Fujisawa, Chem Phys. Lett. 237, 106 (1995).ADSGoogle Scholar
  195. [195]
    E. W. D. Norton, Trans. Amer. Acad. Ophalmol. Otolaryngol. 77, 85 (1973).Google Scholar
  196. [196]
    S. Brubaker, G. A. Peyman, and C. Vygantas, Arch. Ophthalmol. 92, 324 (1974).Google Scholar
  197. [197]
    L. G. Christophorou, R. A. Mathis, D. R. James, and D. L. McCorkle, J. Phys. D 14, 1889 (1981).ADSGoogle Scholar
  198. [198]
    L. G. Christophorou, R. A. Mathis, S. R. Hunter, and J. G. Carter, J. Appl. Phys. 63, 52 (1988).ADSGoogle Scholar
  199. [199]
    L. G. Christophorou, Nucl. Instrum. Methods Phys. Res. A 268, 424 (1988).Google Scholar
  200. [200]
    J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. MaskellClimate Change 1995Cambridge University Press, New York, 1996, p. 22.Google Scholar
  201. [201]
    R. A. Morris, T. M. Miller, A. A. Viggiano, J. F. Paulson, S. Solomon, and G. Reid, J. Geophys. Res. 100, 1287 (1995).ADSGoogle Scholar
  202. [202]
    J. P. Novak and M. F. Fréchette, J. Appl. Phys. 63, 2570 (1988).ADSGoogle Scholar
  203. [203]
    H. Itoh, T. Miyachi, M. Kawaguchi, Y. Nakao, and H. Tagashira, J. Phys. D 24, 277 (1991).ADSGoogle Scholar
  204. [204]
    O. Bastiansen, O. Hassel, and L. K. Lund, Acta Chem. Scand. 3, 297 (1949).Google Scholar
  205. [205]
    H. P. Lemaire and R. L. Livingston, J. Am. Chem. Soc. 74, 5732 (1952).Google Scholar
  206. [206]
    N. V. Alekseev, I. A. Ronova, and P. P. Barzdain, Zh. Strukt. Khim. 9, 1073 (1968).Google Scholar
  207. [207]
    C. H. Chang, R. F. Porter, and S. H. Bauer, J. Mol. Struct. 7, 89 (1971).ADSGoogle Scholar
  208. [208]
    N. V. Alekseev and P. P. Barzdain, Zh. Strukt. Khim. 15, 181 (1972).Google Scholar
  209. [209]
    B. Beagley, R. Calladine, R. G. Pritchard, and S. F. Taylor, J. Mol. Struct. 158, 309 (1987).ADSGoogle Scholar
  210. [210]
    R. P. Bauman and B. J. Bulkin, J. Chem. Phys. 45, 496 (1966).ADSGoogle Scholar
  211. [211]
    F. A. Miller and R. J. Capwell, Spectrochim. Acta 27A, 1113 (1971).ADSGoogle Scholar
  212. [212]
    C. Mao, C.-S. Nie, and Z.-Y. Zhu, Spectrochim. Acta 44A, 1093 (1988).ADSGoogle Scholar
  213. [213]
    G. Fischer, R. L. Purchase, and D. M. Smith, J. Mol. Struct. 405, 159 (1997).ADSGoogle Scholar
  214. [214]
    T. M. Miller, R. A. Morris, A. E. S. Miller, A. A. Viggiano, and J. F. Paulson, Int. J. Mass Spectrom. Ion Processes 135, 195 (1994).ADSGoogle Scholar
  215. [215]
    K. G. Mothes and R. N. Schindler, Ber. Bunsenges. Phys. Chem. 75, 938 (1971).Google Scholar
  216. [216]
    C. Lifshitz, T. O. Tiernan, and B. M. Hughes, J. Chem. Phys. 59, 3182 (1973).ADSGoogle Scholar
  217. [217]
    G. K. Jarvis, K. J. Boyle, C. A. Mayhew, and R. P. Tuckett, J. Phys. Chem. A 102, 3230 (1998).Google Scholar
  218. [218]
    C. Lifshitz and R. Grajower, Int. J. Mass Spectrom. Ion Phys. 10, 25 (1972/1973).Google Scholar
  219. [219]
    M. B. RobinHigher Excited States of Polyatomic MoleculesAcademic, New York, 1974, Vol. I, p. 180.Google Scholar
  220. [220]
    M. M. Bibby and G. Carter, Trans. Faraday Soc. 59, 2455 (1963).Google Scholar
  221. [221]
    L. Kevan and J. H. Futrell, J. Chem. Soc, Faraday Trans. 2 68, 1742 (1972).Google Scholar
  222. [222]
    I. Sauers, L. G. Christophorou, and J. G. Carter, J. Chem. Phys. 71, 3016 (1979).ADSGoogle Scholar
  223. [223]
    R. Grajower and C. Lifshitz, Israel J. Chem. 6, 847 (1968).Google Scholar
  224. [224]
    M. V. Kurepa3rd Cz. Conference on Electronics and Vacuum Physics Trans-actions1965, p. 107.Google Scholar
  225. [225]
    P. W. Harland and J. C. J. Thynne, Int. J. Mass Spectrom. Ion Phys.10, 11 (1972/1973).Google Scholar
  226. [226]
    P. W. Hariand and J. L. Franklin, J. Chem. Phys. 61, 1621 (1974).ADSGoogle Scholar
  227. [227]
    I. Ishii, R. McLaren, A. P. Hitchcock, K. D. Jordan, Y. Choi, and M. B. Robin, Can. J. Chem. 66, 2104 (1988).Google Scholar
  228. [228]
    H. Nishimura, inProceedings of the International Symposium on Electron- Molecule Collisions and SwarmsY. Hatano, H. Tanaka, and N. Kouchi, (Eds.), Tokyo, Japan, July 1999, p. 103.Google Scholar
  229. [229]
    H. Nishimura, private communication, November 1999.Google Scholar
  230. V. McKoy, as quoted in [142].Google Scholar
  231. [231]
    C. Winstead and V. McKoy, J. Chem. Phys. 114, 7407 (2001).ADSGoogle Scholar
  232. [232]
    H. Toyota, M. Ito, and H. Sugai, Jpn. J. Appl. Phys. 36, 3730 (1997).ADSGoogle Scholar
  233. [233]
    C. Q. Jiao, A. Garscadden, and P. D. Haaland, inGaseous Dielectrics VIIIL. G. Christophorou and J. K. Olthoff (Eds.), Kluwer Academic/Plenum Publishers, New York, 1998, p. 57.Google Scholar
  234. [234]
    C. Q. Jiao, A. Garscadden, and P. D. Haaland, Chem. Phys. Lett. 297, 121 (1998).ADSGoogle Scholar
  235. [235]
    D. L. Smith and L. Kevan, J. Chem. Phys. 55, 2290 (1971).ADSGoogle Scholar
  236. [236]
    M. S. Naidu, A. N. Prasad, and J. D. Craggs, J. Phys. D 5, 741 (1972).ADSGoogle Scholar
  237. [237]
    T. Tagashira, Y. Miyamoto, and M. Shimozuma, inProceedings of the XVIII International Conference on Phenomena in Ionized GasesSwansea, U.K., July 1987, p. 680.Google Scholar
  238. [238]
    C. Wen and J. M. Wetzer, inIX International Conference on Gas Discharges and Their ApplicationsVenezia, Italy, September 1988, p. 367.Google Scholar
  239. [239]
    J. de Urquijo, private communication, July 2000.Google Scholar
  240. [240]
    J. de Urquijo and E. Basurto, J. Phys. D 34, 1352 (2001).ADSGoogle Scholar
  241. [241]
    J. Berril, M. J. Christensen, and I. W. McAllister, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 304.Google Scholar
  242. [242]
    L. G. Christophorou, R. A. Mathis, S. R. Hunter, and J. G. Carter, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 88.Google Scholar
  243. [243]
    H. Kazumi, R. Hamasaki, and K. Tago, Plasma Sources Sci. Technol. 5, 200 (1996).ADSGoogle Scholar
  244. [244]
    W. T. Naff, C. D. Cooper, and R. N. Compton, J. Chem. Phys. 49, 2784 (1968).ADSGoogle Scholar
  245. [245]
    J. M. S. Henis and C. A. Mabie, J. Chem. Phys. 53, 2999 (1970).ADSGoogle Scholar
  246. [246]
    R. L. Woodin, M. S. Foster, and J. L. Beauchamp, J. Chem. Phys. 72, 4223 (1980).ADSGoogle Scholar
  247. [247]
    L. G. Christophorou, Adv. Electron. Electron Phys. 46, 55 (1978).Google Scholar
  248. [248]
    A. Chutjian and S. H. Alajajian, J. Phys. B 20, 839 (1987).ADSGoogle Scholar
  249. [249]
    A. A. Christodoulides, L. G. Christophorou, R. Y. Pai, and C. M. Tung, J. Chem. Phys. 70, 1156 (1979).ADSGoogle Scholar
  250. [250]
    A. Kono and K. Kato, Appl. Phys. Lett. 77, 495 (2000).ADSGoogle Scholar
  251. [251]
    S. M. Spyrou, S. R. Hunter, and L. G. Christophorou, J. Chem. Phys. 83, 641 (1985).ADSGoogle Scholar
  252. [252]
    L. G. Christophorou, D. L. McCorkle, and D. Pittman, J. Chem. Phys. 60, 1183 (1974).ADSGoogle Scholar
  253. [253]
    A. A. Christodoulides, L. G. Christophorou, and D. L. McCorkle, Chem. Phys. Lett. 139, 350 (1987).ADSGoogle Scholar
  254. [254]
    E. Schultes, Ph. D. dissertation, University of Bonn, 1973; as quoted in Ref. [255].Google Scholar
  255. [255]
    A. A. Christodoulides, E. Schultes, R. Schumacher, and R. N. Schindler, Z. Naturforschg. 29a, 389 (1974).ADSGoogle Scholar
  256. [256]
    K. M. Bansal and R. W. Fessenden, J. Chem. Phys. 59, 1760 (1973).ADSGoogle Scholar
  257. [257]
    L. G. Christophorou and P. G. Datskos, Int. J. Mass Spectrom. Ion Processes 149/150, 59 (1995).Google Scholar
  258. [258]
    M. Yamaji, Y. Okada, and Y. Nakamura, inProceedings of the Interna-tional Symposium on Electron-Molecule Collisions and SwarmsY. Hatano, H. Tanaka, and N. Kouchi (Eds.), Tokyo, Japan, July 1999, p. 151.Google Scholar
  259. [259]
    T. Su and L. Kevan, J. Phys. Chem. 77, 148 (1973).Google Scholar
  260. [260]
    R. A. Morris, A. A. Viggiano, S. T. Arnold, and J. F. Paulson, Int. J. Mass Spectrom. Ion Processes 149/150, 287 (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Loucas G. Christophorou
    • 1
    • 2
  • James K. Olthoff
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Academy of AthensAthensGreece

Personalised recommendations